Duke Pnidersity
Tdnmund T Pratt, Jr. School of Tugineering

EGR 53L Spring 2005

Test 11

Michael R. Gustafson II

Name (please print)

In keeping with the Community Standard, I have neither provided nor received any assistance on this
test. I understand if it is later determined that I gave or received assistance, I will be brought before the
Undergraduate Judicial Board and, if found responsible for academic dishonesty or academic contempt, fail
the class. I also understand that I am not allowed to speak to anyone except the instructor about any aspect
of this test until the instructor announces it is allowed. I understand if it is later determined that I did
speak to another person about the test before the instructor said it was allowed, I will be brought before the
Undergraduate Judicial Board and, if found responsible for academic dishonesty or academic contempt, fail
the class.

Signature:

Problem I: [15 pts.] Validating Inputs

An electrical engineer is writing code to help quickly determine the equivalent resistance of two
resistors that are either in series or in parallel. To do this, the engineer has written a program
that will ask the user for a resistance, a word, and another resistance, as shown below:

1stRes = imput(‘‘First resistance: ’’);
MyWord = imput(‘‘Connection: series or parallel: ’’);
2ndRes = imput(‘‘Second resistance: ’’)

The problem is, this code has some flaws. Furthermore, this program is going to be used by
other people so the code needs some input validation. All resistances entered must be greater
than zero, and the only words that are valid are series and parallel. Re-write the code so
that when it is complete, Matlab knows two proper values for the resistances and has one of the
valid words in MyWord.

Res1=0
while Res1<=0
Resl=input('First resistance: ‘);
end
MyWord="blah’
while ~(strcmp(MyWord, 'series’) | strcmp(MyWord, 'parallel’))
MyWord=input(‘Connection: series or parallel: ', 's");
end
Res2=0
while Res2<=0
Res2=input('Second resistance: ');
end

Name (please print):
Community Standard (print ACPUB ID):

Problem II: [20 pts.] Formatted Output and Files

An engineer is using Matlab in order to produce a text file containing a trig table for common
angles. When the script is done, the output file should contain the values of cosine, sine, and tan
for angles 0-355 degrees in increments of 5 degrees. The table needs to be properly aligned and
should have four digits after the decimal point for the trig columns.

In creating the table, if there are angles for which cosine, sine, or tangent are infinite, the program
should print the word “Infinity” in the table instead of the value Matlab returns. The portion of
the table from 45 degrees to 100 degrees is shown below with ’X’s on the first line to show you
spaces for that line (the 'X’s are not a part of the table, just there to help you with spacing):

X45XX0.7071XX0.7071XXXX1.0000

50 0.6428 0.7660 1.1918
55 0.5736 0.8192 1.4281
60 0.5000 0.8660 1.7321
65 0.4226 0.9063 2.1445
70 0.3420 0.9397 2.7475
75 0.2588 0.9659 3.7321
80 0.1736 0.9848 5.6713
85 0.0872 0.9962 11.4301
90 0.0000 1.0000 Infinity
95 -0.0872 0.9962 -11.4301
100 -0.1736 0.9848 -5.6713

The table should be saved to a file called MyTable.out. For this program, indicate any spaces in
your printing commands with the hat character "

fid = fopen('MyTable.out', 'w")
for k=0:5:355
angle = k * pi / 180;
fprintf(fid, '%3.0f"\%7.4f"%7.4f', k, cos(angle), sin(angle))
if k==90 | k==270
fprintf('MInfinity\n’)
else
fprintf(fid, '*%9.4f\n’, tan(angle))
end
end
fclose(fid)

% Note, for Matlab 7 instead of converting the
% angle to radians, cosd, sind, and tand may be used
% In this case, the question tand(k)==inf is allowed

Name (please print):
Community Standard (print ACPUB ID):

Problem III: [25 pts.] Root Finding

(1) Given some function y(z) = 2® — 192 — 30, give the command or commands you would use

in Matlab to find the roots of this polynomial:
roots([1 0 -19 -30]) %OR
y=inline('x."3-19*x-30', 'x"); fzero(y, 10) %OR
fzero('x."3-19*x-30', 10)

(2) Assuming some function f(z) and some guess z , write the equation that models how
Newton’s method determines the next guess for the root:

YO

S 57 ¢ XR)

(3) Demonstrate your ability to find a root using Newton’s Method by finding a root of y(x) =
23 — 192 — 30. Use a starting value of 10, a function tolerance of 0.1, an x tolerance of
0.001, and a maximum number of iterations of 6. Explain what value you found for the root
and which of the three conditions above made you stop. Also indicate the total number
of iterations, the final x tolerance, and the final f tolerance. Finally, state what value or

values for an initial guess would have been disastrous and why.

f(x) =x"3-19 x - 30
f(x) = 3x"2 - 19

k ik k) k)
10,0000 760.00000 251.00000
722420 20976436 137 56717
560970 4554476 75 44898
510225 5.EE381 5909882
500269 0.15073 56.08071
500000 0.00011

o) Mmoo] R —=

Root at x=5.000

minos ff xk+
-2 77580
-1.52481
159714
-[1.09956
-0.00269

722420
5 B33
510225
500263
5.00000

Stopped after 5 iterations due to f tolerance on line 6 of .00011

Final x tolerance therefore .00269 from line 5

Bad initial guess is wherever f' = 0, so (3x"2-19)=0 or f=+/- sqrt(19/3)

Name (please print):
Community Standard (print ACPUB ID):

Problem IV: [20 pts.] Loops

(1) Show the output for the following Matlab code:

for k=2:4.5
for n=k:2:5 29
fprintf (’%0.0f %0.0f\n’, k, n);
end 24
end 33
35
44

(2) Show the output for the following Matlab code:

k=1;
Counti=k;
while k<4 | Count1<5
k=k+Countl;
Count1=Counti+1;
fprintf(’%0.0f %0.0f\n’, k, Countl);
end 292
43
74
115

(3) Show the output for the following Matlab code:

Count2=0;
for m=[3 1 4 2:0]

Count2=Count2+m;

fprintf (’%0.0f %0.0f\n’, m, Count2);
end

33
14
48

(4) Show the output for the following Matlab code:

for p=1:4:18
Count3=0;
q=10-p;
while g<7
q=q+3;
Count3 = Count3+1;
end
fprintf (’p:%0.0f q:%0.0f ¢3:%0.0f\n’, p, q, Count3);
end
fprintf (°P:%0.0f Q:%0.0f C3:%0.0f\n’, p, q, Count3);
p:1g:9c3:0
p:50:8 c3:1
p:9Qq:7 c3:2
p:13 g:9 c3:4
p:17 g:8 c3:5

P:17 Q:8 C3:5

Name (please print):
Community Standard (print ACPUB ID):

Problem V: [20 pts.] Overloaded Functions

An engineer is running experiments on several different metal samples. At the end of the exper-
iment, a quality ranking - an integer between 0 and 10 - is assigned to the sample. Your task is
to write a program that will help analyze the experimental data.

You need to write a function called Analyzer.m that will accept up to three arguments. The
first argument should be an NxM matrix of quality rankings. If there is only one argument,
the function should return the total number of quality rankings greater than 0. If there is a
second argument, the function should return the number of quality rankings equal to that second
argument. Finally, if there is a third argument, the function should return the number of quality
rankings between the second and third argument (inclusive). Note that if the user calls the
function with no arguments, the program should state No Inputs and set the output to zero. A
sample diary is below, while the first line of the function is beneath the diary.

> A =[120; 03 4; 45 6];
>> Countl = Analyzer(A)
Countl =

7
>> Count2 = Analyzer (A, 4)
Count2 =

2
>> Count3 = Analyzer(A, 3, 5)
Count3 =

4
>> Count4 = Analyzer
No Inputs
Count4 =

0

function CountOut = Analyzer(QR, X, Y)

if nargin==
fprintf('No Inputs\n’)
CountOut = 0;

elseif nargin==1
CountOut = sum(sum(QR>0));
elseif nargin==2
CountOut = sum(sum(QR==X));
else
CountOut = sum(sum(QR>=X & QR<=Y));
end

% Note: instead of sum(sum()),
% length(find()) may be used
% length() does not work alone, however

