
'XNH�8QLYHUVLW\�
(GPXQG�7��3UDWW��-U��6FKRRO�RI�(QJLQHHULQJ

EGR 53L Fall 2009

Test III
Rebecca A. Simmons & Michael R. Gustafson II

Name (please print):

NET ID (please print):

In keeping with the Community Standard, I have neither provided nor received any assistance on this test. I understand if
it is later determined that I gave or received assistance, I will be brought before the Undergraduate Conduct Board and, if found
responsible for academic dishonesty or academic contempt, fail the class. I also understand that I am not allowed to speak to
anyone except the instructor about any aspect of this test until the instructor announces it is allowed. I understand if it is later
determined that I did speak to another person about the test before the instructor said it was allowed, I will be brought before
the Undergraduate Conduct Board and, if found responsible for academic dishonesty or academic contempt, fail the class.

Signature:

Notes

• You will be turning in each problem in a separate pile. Most of these problems will require working on separate pieces of
paper - Make sure that you do not put work for more than any one problem on any one piece of paper. For
this test, you will be turning in four different sets of work. Again, Please do not work on multiple problems on the
same sheet of paper. Also - please do not put work for one problem on the back of another problem.

• Be sure your name and NET ID show up on every page of the test. If you are including work on extra sheets of paper,
put your name and NET ID on each and be sure to staple them to the appropriate problem. Problems without names
will incur at least a 25% penalty for the problem.

• This first page should have your name, NET ID, and signature on it. It should be stapled on top of and turned in
with your submission for Problem I.

• You will not need nor can you use a calculator on this test. For “hand calculations” you will instead show the
set-up of the calculation you need to perform but will not reduce it.

• You will be asked to write several lines of code on this test. Make sure what you write is MATLAB code and not
mathematics. Also be clear if you are writing .* or ./ or .̂ versus just * or / or ˆ for those operations where there is a
distinction.

Name (please print):
Community Standard (print ACPUB ID):

Problem I: [15 pts.] Water Water Everywhere!

Pre-script - for each of the hand-calculations, show the calculations you would need to perform by substituting in
the relevant numbers but do not simplify. For instance, if you were asked to find the length of the third side of a
triangle that had side-angle-side measurements of 1, 80◦, and 2, you could write:

length =
√

(1)2 + (2)2 − 2(1)(2) cos(80◦)

Part of the Smart Home is a set of two 1000-gallon water storage systems that can collect rainwater to be used for
non-potable applications such as watering the yard.

(1) (By Hand) One mechanism to determine the amount of fluid in the tank is to measure the flow rate of water
into the tank from the rainwater collection system and the flow rate of water out of the tank through the
irrigation system. Given the following table of net flow rate (Q) information - where positive values denote
more water coming into the tank:

t, hr 0 2 4 6 8 10

Q, gal/hr 0 11 15 30 −3 −7

(a) Assuming the tank started with 500 gallons at midnight (hour 0), using the most accurate method we
discussed in lab, show the calculation you would use to find out how much water is in the tank at 10 AM.

(b) Show the processes to find an equation in the appropriate interval that would be used to estimate the flow
rate Q at 3:30 AM using quadratic interpolation. For this interpolation, use the three points in the data
set closest to 3:30 AM. Label your estimate Q̂Q(3.5). Again, you do not need to simplify the equation.

(2) (By Hand) Another mechanism for determining the amount of fluid in the tank would be to measure the fluid
pressure at the bottom of the tank and convert the pressure first to a height and then to a volume. Given the
following table for volume measurements in the tank - taken on a different day from the examples above:

t, hr 0 2 4 6 8 10

V, gal 600 610 580 560 570 590

(a) Using three point differences, show the calculation you would perform to estimate the rates of change of
the tank volume at midnight and at 6 AM.

(b) Using three point differences, show the calculation you would perform to estimate the second derivatives of
the tank volume at 4 AM and at 10 AM.

(3) (Programming) Using the fluid volume data from part (2) above, show all the MATLAB code needed to
calculate an array of estimates for the volume every half-hour between midnight and 10 AM using linear
interpolation, polynomial interpolation, and cubic splines. In your code, call the estimate variables VLIN, VP,
and VCS respectively. In the case of the cubic spline, assume you have no good information about what the
slopes might be at the endpoints. Assume the clear command has just been run.

(1) (a) There are 6 points, so best bet is to combine a Simpson’s 1/3rd with a Simpson’s 3/8ths:

∫ 10

0

Q(t) dt ≈
∆t

3
(Q(0) + 4Q(2) + Q(4)) +

3∆t

8
(Q(4) + 3Q(6) + 3Q(8) + Q(10))

≈
2

3
(0 + 4(11) + (15)) +

6

8
((15) + 3(20) + 3(−3) + (−7))

(b) Use values at times 2, 4, and 6 to get a quadratic. Quickest way is to use Newton polynomials:

Q̂Q(3.5) ≈ Q(2) +
Q(4) − Q(2)

4 − 2
(3.5 − 2) +

Q(6)−Q(4)
6−4 − Q(4)−Q(2)

4−2

6 − 2
(3.5 − 2)(3.5 − 4)

≈ (11) +
(15) − (11)

4 − 2
(3.5 − 2) +

(30)−(15)
6−4 − (15)−(11)

4−2

6 − 2
(3.5 − 2)(3.5 − 4)

(2) (a) Must use exception at first point; can use centered at 6 AM:

dV

dt

∣

∣

∣

∣

0

≈
−V (4) + 4V (2) − 3V (0)

2 ∗ ∆t

dV

dt

∣

∣

∣

∣

6

≈
V (8) − V (4)

2 ∗ ∆t

dV

dt

∣

∣

∣

∣

0

≈
−580 + 4(610)− 3(600)

2 ∗ 2

dV

dt

∣

∣

∣

∣

6

≈
570 − 580

2 ∗ 2

(b) Can use centered at 4 AM; must use exception at last point:

d2V

dt2

∣

∣

∣

∣

4

≈
V (6) − 2V (4) + V (2)

∆t2
d2V

dt2

∣

∣

∣

∣

10

≈
V (10) − 2V (8) + V (6)

∆t2

d2V

dt2

∣

∣

∣

∣

4

≈
560 − 2(580) + 610

22

d2V

dt2

∣

∣

∣

∣

10

≈
590 − 2(570) + 560

22

(3)
t = [0 2 4 6 8 10];

V = [600 610 580 560 570 590];

tmodel = 0:.5:10;

VLIN = interp1(t, V, tmodel , ’linear ’);

VP = polyval(polyfit(t, V, length(t)-1), tmodel);

VCS = interp1(t, V, tmodel , ’spline ’);

VCSalt = spline(t, V, tmodel)

Name (please print):
Community Standard (print ACPUB ID):

Problem II: [25 pts.]
√

4 = ∩ ∩ ∩

There are several methods for communicating color information to electronic displays. One method - RGB - sends
information about the amount of Red, Blue, and Green there should be in an element. Another method - YCbCr -
sends the luma (Y), blue-difference (Cb), and red-difference (Cr) values. The luma is essentially the brightness of an
element and can be related to the necessary RGB values for a device with:

Y = Kr (R − G) + Kb (B − G) + G

where Y is the luma value, R is the red value, G is the green value, B is the blue value, and Kr and Kb are
two constants which are related to how exactly that particular device emits light. To find these constants for your
computer display, you perform an experiment where you measure the luma value of your display while changing the
red and blue values. You keep the green value at 0 the whole time for this experiment, meaning the equation you
are actually working with is:

Y = Kr R + Kb B

For one experiment, the data set you obtained is:

R 0.0 0.0 0.0 0.5 0.5 0.5 1.0 1.0 1.0

B 0.0 0.5 1.0 0.0 0.5 1.0 0.0 0.5 1.0

Y 0.00 0.04 0.07 0.11 0.14 0.18 0.21 0.25 0.28

Write code that will do the following:

(1) Create the data vectors and make a mesh plot, with contours, of Y as a function of R and B. Your R values
should go on the x-axis, B values on the y-axis, and Y values on the z-axis. You do not need to include axis
labels or a title, but you should be careful about making sure the proper variable changes along the proper axis.

(2) Calculate an estimate, using spline interpolation, of the Y value when R is 0.25 and B is 0.75. Call this value
Yestimate.

(3) Calculate the coefficients Kr and Kb that would allow the model equation to best fit the data. Your code should
store these in variables named Kr and Kb.

(4) Calculate the coefficient of determination for this model using the coefficients you calculated above. Your code
should store this in a variable whose name makes sense.

In your code, put comments to show which part you are working on above. For example, when finding the estimate
when R is 0.25 and B is 0.75, you might have

% Part (2)

clear

% Part (1)

%% Since R is the x-axis , should change by *column*

[R, B] = meshgrid(0:.5:1, 0:.5:1);

Y = [0.00 0.11 0.21; 0.04 0.14 0.25; 0.07 0.18 0.28];

meshc(R, B, Y)

% Part (2)

Yestimate = interp2(R, B, Y, 0.25, 0.75, ’spline ’)

% Part (3) using linear algebra

A = [R(:) B(:)];

MyCoefs = A\Y(:)

Kr = MyCoefs(1)

Kb = MyCoefs(2)

% Part (3) using Sr minimization

Yeqn = @(coefs , R, B) coefs (1)*R + coefs (2)*B;

fSSR = @(coefs , R, B, Y) sum((Y-Yeqn(coefs , R, B)).^2);

[MyCoefs , Sr] = fminsearch(@(MyCoefsDummy) fSSR(MyCoefsDummy , R(:), B(:), Y(:)),...

[1 1])

Kr = MyCoefs(1)

Kb = MyCoefs(2)

% Part (4)

Yhat = Kr * R + Kb * B;

St = sum((Y(:) - mean(Y(:))).^2)

Sr = sum((Y(:) - Yhat (:)).^2)

r2 = (St - Sr) / St

Name (please print):
Community Standard (print ACPUB ID):

Problem III: [30 pts.] A data set in need of a tailor

A data set from an experiment is in a text file. The first column represents the independent values (x) and the
second column represents the dependent values (y). Your job is to write a program that will load the data then
determine the least-squares-fit coefficients for three different models. You will also take the third model only and
use it to calculate a coefficient of determination and present its predictions graphically. Specifically, your program
should:

(1) Load the data from a file called MyData.txt and split it up such that there is a variable called x with the
independent data and a variable called y for the dependent data

(2) Calculate the best coefficients for a second-order polynomial fit:

ŷ1(x) = A + Bx + Cx2

and make sure that your code calculates values for variables named A, B, and C. Note: this is all you will be
doing with this model.

(3) Calculate the best coefficients for a fit assuming

ŷ2(x) = F + Ge2x + H

(

1

x

)

and make sure that your code calculates values for variables named F, G, and H. Note: this is all you will be
doing with this model.

(4) Calculate the best coefficients for a fit assuming

ŷ3(x) = Q cos(Tx) + R sin(Tx) + S

and make sure that your code calculates values for variables named Q, R, S, and T. Note that T shows up twice
in the equation.

(5) Calculate the coefficient of determination for ŷ3(x) only. Call this variable COD3.

(6) Using ŷ3(x) only generate predictions for y based on 400 linearly-spaced values for x that have the same domain
as the original data. Give this array a name that makes sense.

(7) Produce a graph with the original data points portrayed with black squares and the values predicted by ŷ3(x)
only as a solid black line. You do not need to add axis labels, a title, or a legend to this graph.

(8) Save the graph as a black-and-white encapsulated PostScript file called MyPlot.eps.

In your code, put comments to show which part you are working on above. For example, when finding the coefficients
for the polynomial, you might have

% Part (2)

% Part (1)

load MyData.txt

x = MyData (: ,1);

y = MyData (: ,2);

% Part (2)

MyCoefsABC = polyfit(x, y, 2);

A = MyCoefsABC(3)

B = MyCoefsABC(2)

C = MyCOefsABC(1)

% Part (3)

AA = [x.^0 exp(2*x) 1./x];

MyCoefsFGH = AA\y;

F = MyCoefsFGH(1)

G = MyCoefsFGH(2)

H = MyCoefsFGH(3)

% Part (4)

yeqn = @(coefs , x) coefs (1)*cos(coefs (4)*x)+coefs (2)*sin(coefs (4)*x)+coefs (3);

fSSR = @(coefs , x, y) sum((y - yeqn(coefs , x)).^2);

[MyCoefsQRST , Sr] = fminsearch(@(MyCoefs) fSSR(MyCoefs , x, y), [1 1 1 1]);

Q = MyCoefsQRST(1)

R = MyCoefsQRST(2)

S = MyCoefsQRST(3)

T = MyCoefsQRST(4)

% Part (5)

St = sum((y - mean(y)).^2)

COD3 = (St - Sr) / St

% Part (6)

xmodel = linspace(min(x), max(x), 400);

ymodel = yeqn(MyCoefsQRST , xmodel);

% Part (7)

plot(x, y, ’ks ’, xmodel, ymodel , ’k-’)

% Part (8)

print -deps MyPlot

Name (please print):
Community Standard (print ACPUB ID):

Problem IV: [30 pts.] Presented to you by the Squirrel Nut Zippers

You and your lab partner are running an experiment where, every 100 seconds (and exactly every 100 seconds)
you take a temperature measurement in Kelvin. For the experiment, you need to know the running integral of the
temperature as well as the first and second derivatives of temperature at the most recently obtained data point.
Because the data points are spaced apart, you will want to make sure both your integral and derivatives use the most
accurate methods we have used in class. Note that your program will not know in advance how many data points
you will be collecting.

Your program should ask for temperatures and, as long as the value entered is some non-negative number, print out
the (most accurate) current value of the total integral as well as the most accurate version of the first and second
derivative of the temperature that we covered in class and lab. Note: When the first temperature is entered, nothing
should be reported. When the second temperature is entered, the first derivative may be calculated but the second
derivative should be reported as 0. After receiving the third entry and beyond, the most accurate (i.e. three-point)
versions of the derivatives should be used.

If the user inputs a negative number, the program should stop running without trying to calculate an integral or
derivatives based on that point. When printing items, use integers for the times and the %g replacement code for all
other numbers. An example run showing the different values your program should print out at each step is below.
Note that the numbers 300, 310, 340, 320, 350, and -1 are examples that would be entered by the user.

Enter first temperature: 300

Enter the next temperature: 310

At time 100:

int(T) = 30500 K*s

dT/dt = 0.1 K/s

d^2T/dt^2 = 0 K/s/s

Enter the next temperature: 340

At time 200:

int(T) = 62666.7 K*s

dT/dt = 0.4 K/s

d^2T/dt^2 = 0.002 K/s/s

Enter the next temperature: 320

At time 300:

int(T) = 96375 K*s

dT/dt = -0.45 K/s

d^2T/dt^2 = -0.005 K/s/s

Enter the next temperature: 350

At time 400:

int(T) = 128333 K*s

dT/dt = 0.55 K/s

d^2T/dt^2 = 0.005 K/s/s

Enter the next temperature: -1

clear

dt = 100;

T(1) = input(’Enter first temperature: ’);

if T(1)<0 return; end;

T(2) = input(’\nEnter next temperature: ’);

nT = 2;

while(T(nT)>=0)

Time = (nT -1)*dt;

if nT==2

My1Diff = (T(2)-T(1))/dt;

My2Diff = 0;

MyInt = dt/2*(T(1)+T(2));

else

My1Diff = (3*T(nT)-4*T(nT -1)+T(nT -2))/2/dt;

My2Diff = (T(nT)-2*T(nT -1)+T(nT -2)) / dt^2;

if nT==3

MyInt = dt/3*(T(1)+4*T(2)+T(3));

elseif nT==4

MyInt = 3*dt/8*(T(1)+3*T(2)+3*T(3)+T(4));

elseif floor(nT/2)~=(nT/2)

MyInt = dt/3*(T(1)+4* sum(T(2:2:end -1))+2*sum(T(3:2:end -2))+T(end));

else

MyInt = dt/3*(T(1)+4* sum(T(2:2:end -4))+2*sum(T(3:2:end -5))+T(end -3))+...

3*dt/8*(T(end -3)+3*T(end -2)+3*T(end -1)+T(end));

end

end

fprintf(’\nAt time %d:\n’, Time)

fprintf(’int(T) = %g K*s\n’, MyInt)

fprintf(’dT/dt = %g K/s\n’, My1Diff)

fprintf(’d^2T/dt^2 = %g K/s/s\n\n’, My2Diff)

nT = nT + 1;

T(nT) = input(’Enter next temperature: ’);

end

