
'XNH�8QLYHUVLW\�
(GPXQG�7��3UDWW��-U��6FKRRO�RI�(QJLQHHULQJ

EGR 53L Fall 2009

Test I
Rebecca A. Simmons & Michael R. Gustafson II

Name and NET ID (please print)

In keeping with the Community Standard, I have neither provided nor received any assistance on this test. I understand if
it is later determined that I gave or received assistance, I will be brought before the Undergraduate Conduct Board and, if found
responsible for academic dishonesty or academic contempt, fail the class. I also understand that I am not allowed to speak to
anyone except the instructor about any aspect of this test until the instructor announces it is allowed. I understand if it is later
determined that I did speak to another person about the test before the instructor said it was allowed, I will be brought before
the Undergraduate Conduct Board and, if found responsible for academic dishonesty or academic contempt, fail the class.

Signature:

Notes

• You will be turning in each problem in a separate pile. Make sure, then, that you do not put work for more than any one
problem on any one piece pf paper. For this test, you will be turning in five different sets of work.

• Be sure your name and NET ID show up on every page of the test. If you are including work on extra sheets of paper, put
your name and NET ID on each and be sure to staple them to the appropriate problem.

• This first page should have your name, NET ID, and signature on it. It should be stapled on top of your submission for
Problem I.

Name (please print):
Community Standard (print ACPUB ID):

Problem I: [15 pts.] Basic Programming

• Write all the MATLAB statements required to generate a graph that shows three functions for height (in
meters):

y1(t) = et y2(t) = t2 y3(t) = ln(t)

for t between 1 and 2 seconds. Your graph should include 120 linearly spaced points between 1 and 2 for t.
You should include axis labels, a title, and a reasonable legend placed as far out of the way as MATLAB can
handle. You should make sure to use black lines but may choose the style. You should save the graph in a file
called ThreeLines.eps. The script is started for you

clear; format short e; figure (1); clf

t = linspace(1, 2, 120);

plot(t, exp(t), ’k-’, t, t.^2, ’k--’, t, log(t), ’k:’)

legend(’e^t’, ’t^2’, ’ln(t)’, 0)

xlabel(’Time (s)’)

ylabel(’Height (m)’)

title(’Height vs. Time for Three Functions (NET ID)’)

print -deps ThreeLines.eps

• Write a function .m file called GeoMean.m to calculate the geometric mean of two numbers:

Geometric Mean of a and b =
√

a · b

Your function should check to make sure the user called the functions with two inputs and give an error
otherwise. Similarly, your program should make sure the two inputs are the same size and give an error if not.
In cases where the user correctly enters two similar-sized matrices, your function should return geometric means
of corresponding values in matrices.

function MeanOut = GeoMean(a, b)

if nargin <2

error(’Not enough inputs !’)

end

if ~(size(a)==size(b))

error(’Not the same size!’)

end

MeanOut = sqrt(a.*b)

Now write a script .m file that does all the work necessary to calculate the geometric means of cos(x) and sin(x)
for values of x between 0 and π/2 separated by π/14. The script must rely on the function above to perform
the calculations. The resulting matrix should be called Quad1Means. The script is started for you:

clear; format short e;

clear; format short e

x = 0:pi/14:pi/2

Quad1Means = GeoMean(cos(x), sin(x))

Name (please print):
Community Standard (print ACPUB ID):

Problem II: [20 pts.] Go ’Canes! (oops..the other kind)

Tropical depressions, tropical storms, and hurricanes are categorized based on wind speeds and the possible storm
surge. The following table shows the category name for storms with varying wind ranges and what the storm surge
is (in feet above normal):

Category Wind Ranges (mph) Storm Surge (ft)
Tropical Depression 0-39 0

Tropical Storm 39-74 0-4
Hurricane > 74 > 4

Write a script, StormCat.m, that will first ask the user to enter either the word wind or surge - should the user fail
to enter a proper response, your program should keep asking until a valid entry is received.

Next the program should ask for a number by using an appropriate prompt - that is to say, the prompt should be
tailored to how the user answered the first question:

Please enter a wind speed:

or

Please enter a surge level:

You may assume that the user properly enters a single positive number here.

Finally, the program should determine if the value the user entered is a tropical depression, a storm, or a hurricane.
It should then print out a statement accordingly. For example, if the user enters wind and 100, the program should
print out

That indicates a hurricane.

while a user entering surge and 0.1 would receive:

That indicates a tropical storm.

clear; format short e

Type = input(’Data type (wind or surge): ’, ’s’);

while ~(strcmp(Type , ’wind ’) | strcmp(Type , ’surge ’))

fprintf(’Please enter either ’’wind ’’ or ’’surge ’’\n’)

Type = input(’Data type (wind or surge): ’, ’s’);

end

Wind = 0;

Surge = 0;

if strcmp(Type , ’wind ’)

Wind = input(’Please enter a wind speed: ’);

else

Surge = input(’Please enter a surge level: ’);

end

if Wind >74 | Surge >4

fprintf(’That indicates a hurricane .\n’)

elseif Wind >39 | Surge >0

fprintf(’That indicates a tropical storm.\n’)

else

fprintf(’That indicates a tropical depression .\n’)

end

Name (please print):
Community Standard (print ACPUB ID):

Problem III: [20 pts.] Imma let you finish, but the colon operator is the best operator of all
time!

For each of the following sections, show what the matrices created or modified in each block will look like at the end
of the snippet of code.

(a)
>>A=linspace (-2, 3, 6)

>>B=logspace (-2, 3, 6)

>>C=-2:3:6

A = [-2 -1 0 1 2 3]

B = [0.01 0.10 1.00 10.00 100.00 1000.00]

C = [-2 1 4]

(b)
>>D=[1.6 2.4 -8.7 -11.2]

>>E=ceil(D)

>>F=fix(D)

>>G=round(D)

D = [1.6 2.4 -8.7 -11.2]

E = [2 3 -8 -11]

F = [1 2 -8 -11]

G = [2 2 -9 -11]

(c)
>>H=[6 4 -3; 8 -9 5]

>>I=sum(H)

>>J=min(H)

>>K=I.*J

H = [6 4 -3

8 -9 5]

I = [14 -5 2]

J = [6 -9 -3]

K = [84 45 -6]

(d)
>>clear

>>L(2, 5) = 10

>>M = [1:5; 6:10]

>>N = M([2 1 2], [1:2:end])

L = [0 0 0 0 0 M = [1 2 3 4 5 N = [6 8 10

0 0 0 0 10] 6 7 8 9 10] 1 3 5

6 8 10]

(e)
>>Oh = eye(2)

>>P = [Oh 2*Oh(end:-1:1,:)]

Oh = [1 0 P = [1 0 0 2

0 1] 0 1 2 0]

Name (please print):
Community Standard (print ACPUB ID):

Problem IV: [20 pts.] The One You Knew Was Coming

A digital thermometer will convert a temperature into a voltage. For the specific thermometer you will be considering,
the relationship between the temperature and the voltage is as follows:

V (T) =

0 T ≤ 32◦F

5
(

T−32

90

)2

32◦F ≤ T ≤ 122◦F

10 − 5
(

212−T

90

)2

122◦F ≤ T ≤ 212◦F
10 T ≥ 212◦F

Write code that will do each of the following tasks:

• Create an anonymous function called Voltage that accepts a matrix of temperatures and returns the corre-
sponding voltages for the thermometer.

• Generate 200 linearly spaced points between 0 and 300 for the temperatures and stores them in a variable with
a reasonable name.

• Plot the voltage versus temperature for those values using a solid black line. You should add an appropriate
title and axis labels to this plot. You do not need to save the plot.

• Finally, generate a 7x4 matrix of random integers between 32 and 212. Assuming these are temperatures,
calculate the overall maximum, minimum, and average voltages for the thermometer based on those random
values. Give these calculations meaningful names such that a person reading your code would understand what
they contain.

The script is started for you:

clear; format short e; figure (1); clf;

Voltage = @(TD) ...

(TD <= 32) .* (0) + ...

(32 < TD & TD <= 122) .* (5*((TD -32)/90).^2) + ...

(122 < TD & TD <= 212) .* (10-5*((212-TD)/90).^2) + ...

(TD > 212) .* (10);

T = linspace(0, 300, 200);

plot(T, Voltage(T), ’k-’)

xlabel(’Temperature (deg. F)’)

ylabel(’Voltage (V)’)

title(’Voltage vs. Temperature for a Thermometer ’)

RandTemps = 32 + floor (181* rand(7, 4));

RandVolts = Voltage(RandTemps)

MinVoltage = min(RandVolts(:))

MaxVoltage = max(RandVolts(:))

AvgVoltage = mean(RandVolts(:))

Name (please print):
Community Standard (print ACPUB ID):

Problem V: [25 pts.] Takin’ What They Givin’

The Green Fuel Cells Corporation has all of its weekly employee data stored in a single text file. The file is set up
in one column such that the first entry is the first employee’s ID, the second entry is the first employee’s pay per
hour, and the third entry is the first employee’s number of hours for that week. Each employee similarly has three
entries in the column. You are going to write a script to process the payroll for this week, which is in a file called
EData38.prl. Your script must do the following:

• Load the data and create three matrices - one containing the employee IDs, one containing the employee pay
rates, and one containing the employee hours for the week. Use an efficient method to do this and give the
matrices sensible names.

• Calculate a matrix called WeekPay for the amount to be paid to each employee. This should be the same shape
as the previously created matrices.

• Print out a formatted table with the employee ID, rate, hours worked, and amount paid for the week. Employee
IDs are six-digit integers. You may assume that employees make between $8.50 and $32.50 per hour and work
no more than 110 hours per week. Rates and salaries should be printed to the nearest cent; hours may be
printed to the nearest tenth of an hour. Make sure the decimal points will line up.

• Determine the minimum, average, and maximum amount paid to an employee and print out a formatted table
with this information. Make sure the decimal points line up.

• Print out a statement for the total amount paid and the total number of employees.

• Calculate and print out a statement about how many employees worked overtime (that is, how many employees
worked more than 40 hours in a week). For grammar purposes, you may assume that you always have at least
2 overtime employees (and thus, always at least two employees as well).

For example - if EData38.prl contained the following:

513882

14.19

103.20

129540

12.99

20.00

680586

9.32

27.40

223276

20.10

63.30

201222

21.28

43.40

here is the output based on that file:

ID Rate Hours Salary

513882 14.19 103.2 1464.41

129540 12.99 20.0 259.80

680586 9.32 27.4 255.37

223276 20.10 63.3 1272.33

201222 21.28 43.4 923.55

Minimum Salary: 255.37

Average Salary: 835.09

Maximum Salary: 1464.41

Totals: 4175.46 paid to 5 employees

Includes 3 overtime employees

%% Prepare the workspace

clear; format short e

%% Load the data

load EData38.prl

%% Split the data into IDs , PayRate , and Hours

IDs = EData38(1:3: end)

PayRate = EData38(2:3: end)

Hours = EData38(3:3: end)

%% Calculate Salary

WeekPay = PayRate .* Hours

%% Print table

fprintf(’ ID Rate Hours Salary\n’)

for k=1:length(IDs)

fprintf(’%6d %5.2f %5.1f %7.2f\n’, IDs(k), PayRate(k), ...

Hours(k), WeekPay(k))

end

fprintf(’\n’)

%% Calculate and print salary data

MinSal = min(WeekPay);

AvgSal = mean(WeekPay);

MaxSal = max(WeekPay);

fprintf(’Minimum Salary: %7.2f\n’, MinSal)

fprintf(’Average Salary: %7.2f\n’, AvgSal)

fprintf(’Maximum Salary: %7.2f\n’, MaxSal)

fprintf(’\n’)

fprintf(’Totals: %0.2f paid to %d employees\n’, sum(WeekPay), length(IDs))

OTE = find(Hours >40);

fprintf(’Includes %d overtime employees\n\n’, length(OTE))

