EGR 53L - Fall 2009

Lab 3:
Introduction to MATLAB

3.1

Introduction

During this lab, you will learn some of the basic skills required to load, process, and display numerical
information in MATLAB. Specifically, you will take data from an actual engineering experiment and process
it in such a way that you can determine whether the experimental apparatus behaves in a particular manner.

3.2

Resources

The additional resources required for this assignment include:

3.3

Books: neither
Pratt Pundit Pages: MATLAB and MATLAB:Script
Lab Manual Appendices: C - “Making and Printing Plots in MATLAB.”

Getting Started
Log into one of the PCs in the lab using your NET ID. Be sure it is set to log on to acpub.

Start X-Win 32 on the PC. Roll the mouse over the X to make sure it is set to Display 0. If not, quit
all instances of X-Win 32 and re-open X-Win 32.

Start PuTTY on the PC. Load a session, make sure X11 Tunneling is set in the SSH category and
connect.

. Once connected to a machine, switch into your EGR563 directory and create a 1lab3 directory inside it:

cd EGR53
mkdir lab3

. Switch to your ~/EGR53/1ab3 directory:

cd lab3

. Copy all relevant files from Dr. G’s public 1ab3 directory:

cp -i ~mrg/public/EGR53/1ab3/* .

Do not forget the “.” at the end.

. Open MATLAB by typing matlab & at the prompt that appears in your terminal window. It will take

MATLAB a few seconds to start up.

Copyright 2009, Gustafson et al.
Lab 3 -1

EGR53L - Fall 2009

3.3.1 Preview of MATLAB

Note: this version is written assuming MATLAB R2007b. OIT will be updating to MATLAB R2009a
sometime during the course of the semester; as such, the layout of the graphical user interface will change
at that time.

1. There should be several components to the MATLAB window on your screen. What you are most
interested in right now is the command window. This is where you type commands that allow MATLAB
to run. The command prompt in MATLAB is the >> symbol. Go ahead and type help load in the
command window at the command prompt and press return.

2. You have now activated the built-in help feature in MATLAB. Typing help followed by a command
name will give you information on any command typed. Currently your command window should
show the help entry for the load command. You should note that although the help feature puts
all commands in CAPITAL LETTERS for clarity, all commands themselves are in lower case. Take a
moment to look over the documentation for the 1oad command. Then take a look at the documentation
for the polyfit command by typing help polyfit. This shows you the syntax and options associated
with this command to create a fit to polynomial data. In this laboratory we will be using both of these
commands, and they will be explained later in more detail. For now, just get a general overview of
what these commands do.

3. To get associated with the MATLAB command window and commands, type the following commands
at the prompt.

(a) x=3
This command will set a variable named x equal to a 1x1 matrix with the value 3 in it. If x
already existed, its previous contents are destroyed and replaced with the new matrix; otherwise,
MATLAB will create a new variable called x and start from scratch. Regardless, x will be [3]
when this command is finished.

(b) x=3;
Note that the semi-colon suppresses MATLAB’s display response to any command. This is used
when the user does not care to have MATLAB display a response to the command.

(c) x
A user is able to find the value of any variable simply by typing that variable’s name into the
command window.

(d) y=x+3
When assigning values to a variable, the user may implement already-defined variables in the
calculation for that variable. Given the formula above, y should now be equal to 6. You can check
this by typing y into the command window.

It is important to note here that y is not created as a function of x - rather, it is created from
calculations including x. Regardless of future changes to the x variable, the y variable will remain
the same. To prove this, type x=10 and then y at the command prompt; y is still 6.

(e) y+3
If no assignment operator (=) is used, but MATLAB performs a calculation or is asked to run a
function that returns one or more variables, MATLAB will assign the evaluation of the expression
to a variable called ans. You can check to make sure that the ans matrix contains 9 by typing
ans at the command prompt.

(f) who
The user can see the names of the variables that have already been assigned by typing who.

(g) whos

By typing whos the user can find out of what type each variable assigned is and its size in addition
to the names of the variables assigned.

Copyright 2009, Gustafson et al.
Lab 3 -2

EGR53L - Fall 2009

3.3.2 .m Files

MATLAB is a command-line driven program, which means it does not save commands once they are typed.
This is problematic when debugging programs because in the command window, if a command is mistyped,
all previous commands may have to be retyped to get the program back to the correct state. Instead script
files, or .m-files, are used in MATLAB to alleviate this problem. You can read more in Pratt Pundit about cre-
ating .m-files for scripts and functions - specifically in the pages MATLAB:Script and MATLAB:User-defined
Function - though the basics needed for this laboratory are presented within this chapter.

1. Go to the File menu and choose the New option, followed by the Blank M-file option. This will open
a new editing window.

2. You can now type commands, just as if you were typing in the command window. The difference is,
these commands will not execute until you save the script and type its name in the command window
(or hit F5 while in the editing window, which both saves and runs the active script). When the script
is run, MATLAB will execute all the commands in the file. Type the lines below in your new script.
Note that your file does not yet have a name.

Xty+z;

3. Save and run this script as myTest.m by going to the Debug menu and choosing Save and Run or by
using the F5 shortcut key on the keyboard. Save the file in your current directory.

4. Now type myTest in the MATLAB command window. You will notice that everything in the script
runs again, just as if you had typed each of the lines of code in the script at the command prompt.
The semi-colon still suppresses output, and any expression without an assignment is still stored in the
variable ans. You can see that the variables have all been stored the same way by typing who or whos.

Copyright 2009, Gustafson et al.
Lab 3 -3

EGR53L - Fall 2009

3.4 Cantilever Beam Analysis

Now that you have learned a little bit about how to get around in MATLAB, we will put your new found
skills to use by having you interpret a data file in MATLAB and present the data in several different forms.
We will be using measurements from a real-life situation, namely the displacement of a cantilever beam. A
cantilever beam is an object that is fixed at one end but bends at the other, much like a diving board. The
question we will trying to answer is, “Does a cantilever beam act like a regular spring?” The scientific way of
asking this question is, “Does Hooke’s Law model a cantilever beam over some limited range of deflections?”
Hooke’s Law states that the deflection of a spring is directly proportional to the force applied to the spring:

F=kAzx

This particular laboratory relates to several of the NAE Grand Challenges for Engineering. First, as
with all the labs, you will be learning ways to engineer the tools of scientific discovery - specifically by
using computational tools to load data, perform calculations to convert the data to a usable form, then use
higher-level functions in MATLAB to perform a least-squares fit analysis. You will also be presenting the
data graphically, which is a fundamental part of working to enhance virtual reality. Finally, the specific
item under consideration - a cantilever beam - is a widely-used structure in architecture and construction;
knowledge of just how one functions is key in the effort to restore and improve urban infrastructure.

As this lab serves to provide an introduction to how MATLAB can be used, we will present the code to
be used step by step, and you will build a script file that will produce data and graphs to help answer the
above question. You then will be responsible for modifying the code such that it analyzes three more data
sets to answer the same question on that data.

The data file contains information obtained from an experiment where objects of known mass were
placed on the end of an instrumented cantilever beam. The deflection at the far end of the beam was then
measured and stored in the data file. Because the amount of force applied is the independent variable and
the displacement is the dependent variable, the equation we will be looking at has displacement as a function
of force:

Az = %F + (Az)o
where 1/k is the spring’s compliance and (Ax)g is the initial displacement of the end of the spring.

In order to answer the above question of whether a cantilever beam acts the same as a spring, we will
take data from the experiment, mathematically determine the compliance and initial displacement values
that make the best predictions for all the data points, and then graphically determine whether it seems the
equation properly predicts the data. Note that in a later lab, you will be able to quantitatively establish the
goodness of fit.

3.5 Creating the Script

In this section you will be creating a script that can be used to solve much of what you will be asked to
do in this lab. In the sections below, you will be shown various MATLAB commands to help process data
and generate plots. When you are done, you should have evidence that will help you support or refute the
notion that cantilever beams behave the same way that springs do. Once you complete the script, you can
then use it to analyze other data sets.

To begin, open a new m-file in MATLAB and save it as RunCan.m. The finished contents of this section
of the lab handout are copied in Section 3.7 on p. Lab 3 — 16, but you should follow line by line through the
narrative below to understand how each line works.

3.5.1 Lab Manual Syntax

Code and results in the lab manual will be set off by certain cues to help you determine what code should
go into your work and what code is for demonstration purposes only. Code that you will actually be adding
to your script will be surrounded by a shadow box:

code you should include

Copyright 2009, Gustafson et al.
Lab 3 -4

EGR53L - Fall 2009

while code that is shown for reference purposes only will by surrounded by a single frame:

interesting code NOT found in your script

MATLAB output will be bracketed by double lines:

ans =
My Output

3.5.2 Comments

For this lab, comments are both explicitly included in the text of the lab manual itself and are also included
in the final code in Section 3.7 on p. Lab 3 — 16. Comments in MATLAB are set off by a single percent
sign, %. If there is a % in a line of code, anything else on that line is ignored - this can be useful for writing
a quick note about the purpose of a particular set of commands:

myVal = 2 + 2; % add two values

Also note in MATLAB’s m-file editor that using two percent symbols to start a line will cause the editor
to believe that starts a new “section” of code. These “sections” are not formally defined as far as the
programming itself, but the m-file editor will graphically delineate different sections from each other. Notice
in the code on p. Lab 3 — 16 how there are two types of comments - those starting with %% that seem to
be “big concept” comments and those just starting with % that are more specific.

While you are generally not required to include extensive comments in your code (other than the comments
with your name and the honor code statement at the start of each MATLAB file), comments are extremely
useful for programmers and can make life much, much easier when troubleshooting codes.

3.5.3 Initializing the Workspace

The first part of the script for this lab will prepare MATLAB to do work. Specifically, the memory will be
wiped clean, MATLAB will be told how to display numbers, and the script will pull up and clear a figure
window. The code for this section all falls under the comment line:

%% Initialize the workspace

1. First, it is good practice to clear all variables before using a script. This is to make sure that previous
commands within MATLAB will not change how the current program behaves. To do this, use the
clear command:

% Clear all variables
clear

2. For this assignment, you will be reading data off the screen. If a matrix contains values that are of
vastly different sizes, the default format (format short) may report values with varying precision or
may lead you to believe values are zero when they are not. For example,

[1.2345e2 1.2345e-4]

in MATLAB displays as

ans =

123.4500 0.0001

in MATLAB while

[1.2345e2 1.2345e-5]

Copyright 2009, Gustafson et al.
Lab 3 -5

EGR53L - Fall 2009

shows up as

ans =
123.4500 0.0000

Using format long can help this some, but if the numbers are of wildly different scales, even format
long has difficulty. For instance,

[1.2345e2 1.2345e-15]

shows up as

ans =

1.0e+02 =*
1.23450000000000 0.00000000000000

with format long. Instead, one of the exponential formats should be used. These display the values
in the matrix using scientific notation, so even the short version gives each value five significant figures:

format short e
[1.2345e2 1.2345e-15]

gives

ans =

1.2345e+02 1.2345e-15

Given all that, add a line to your code to guarantee which format you are in:

format short e

% Change display to short exponential format ‘

. Next, you will tell MATLAB to start a new figure window (or at least make Figure 1 active). MATLAB
can have multiple figures open at once, so it is good programming practice to specify which figure is
being used if graphics are being created. To bring up or activate a particular figure, just use the figure
command with an argument specifying which one:

% Bring up a figure window
figure (1)

. In future labs, you will learn that there are a variety of different ways to either subdivide figure windows
or overlay the results of several graphical commands onto a single window. In either case, it is generally
a good idea, when running a new script, to make sure your figures are starting from scratch. The c1f
command does just that:

clf

% Clear the figure window \

At this stage, you have completed the tasks in the “Initialize the workspace” section of the code. If you save
and run the script, you should see a blank figure window called “Figure 1” pop up. If not, carefully check
your code to make sure it matches the top of the RunCan.m code on p. Lab 3 — 16

Copyright 2009, Gustafson et al.
Lab 3 -6

EGR53L - Fall 2009

3.5.4 Loading and Manipulating the Data

The next section of the code goes through the process of importing the data and manipulating the values
such that they have sensible names and appropriate units. This section falls under the comment:

%% Load and manipulate the data

1. The data file for this particular lab consists of a text file containing eight rows with two columns each
of data. MATLAB’s 1oad command is a simple yet powerful way to load rectangular matrices of data
from a text file. To get the data into MATLAB, then, add the code:

% Load data from Cantilever.dat
load Cantilever.dat

to your script. This will load the file Cantilever.dat from your current working directory and put
the data into a matrix called Cantilever. Note that when MATLAB loads a text-based data file, it
gives the matrix the same name as the file, excluding anything after the first dot in the file name.

At this point, you should save and run your script by hitting the F5 key.

2. Now you will want to check on the progress of your program. Click in MATLAB’s command window and
type whos. You will see that you have created a variable called Cantilever. If you type Cantilever
you can see what values are in the matrix.

3. The first column of the data file contains mass data in kilograms. It would be convenient, therefore,
if we could extract the data from the first column and put it into a matrix with a more meaningful
name, like Mass.

MATLAB allows you to isolate parts of the matrix by specifying the range of columns and rows
you would like to copy. The : character is a way of expressing all. For example, the command
Mass = Cantilever(:,1) tells MATLAB to take all of the rows and the first column of the matrix
Cantilever and store copies of them in the variable Mass. Similarly you can extract the data in the
second column, which represents the displacements that were measured when the mass values in the
first column were set on the edge of the beam, with the command Displacement=Cantilever(:,2).
You should therefore add the following lines of code to your m-file:

% Copy data from each column into new variables
Mass = Cantilever(:,1);
Displacement = Cantilever(:,2);

Remember, the semi-colon at the end means that MATLAB will do its job but will not display the
result on the screen. Go ahead and save and run your script again, and fix any errors that may have
developed.

4. If you go back into the command window, you will now notice by typing whos that you have created
two more variables, Mass and Displacement. If you type their names in the command window and
compare them to the original data in Cantilever, you will see they are the first and second columns,
respectively.

5. Next you need to convert the data in the vectors into the variables needed to perform the analysis.
You also want to make sure all values are in consistent units. Remember - the goal is to analyze how
the data fits with the equation

Az = %F + (Az)g

To begin, the Mass data needs to be converted to the appropriate values of force for this planet. One
of the nice features in MATLARB is that it allows the user to perform operations on an entire vector at

Copyright 2009, Gustafson et al.
Lab 3 -7

EGR53L - Fall 2009

once. To convert a mass in kilograms into a force in Newtons, on Earth, you must multiply the mass
by the value of acceleration due to gravity on Earth (z 9.815%). In your script, you can do this by
adding the code:

% Convert Mass to a Force measurement
Force = Mass*9.81;

This will take all eight entries in the Mass matrix, multiply them by 9.81, and store the 8x1 matrix
that was generated in a variable called Force.

In order to maintain consistent units, the values in the Displacement matrix need to be converted to
meters from their current unit of inches. Knowing that 2.54 cm=1 in and that 100 cm=1 m, we can
come up with the expression Displacement = W. Add the MATLAB code equivalent of
this command to the script with:

% Convert Displacement in inches to meters
Displacement = (Displacement*2.54)/100;

in your script. Go ahead and save and run your script again, fixing any errors.

6. Now if you go into the command window and type whos, you should see the variable Force has been
created. If you check the values in the Force vector, you will see they are different from both the first
column of Cantilever as well as the values in Mass. If you check the values of the Displacement
vector, you will see that they have changed, but that the second column of the Cantilever matrix has
not. This demonstrates that in MATLAB you can take a vector and replace it with a modified version
of itself, as is happening here with the Displacement vector. Your script now has all the building
blocks, in the right units, for performing the analysis.

3.5.5 Generating Plots

Before performing calculations, you may find it useful to take a quick “look” at the data. And rather than
trying to figure out the relationship between the displacement and the force by staring at a table of numbers,
that look could be a plot of the displacement data as a function of the force. For the moment, then, we are
going to skip ahead to the

%% Generate and save plots

part of the script. MATLAB code does not need to be added to the script in the order it is to be executed
- sometimes, jumping to the end for a bit can be helpful. For developing the solution to this problem, we
will plot the data we have obtained. We can plot data on a figure using the plot command. The form of
this command that we want to use requires data for the = and y-coordinates of each point. The independent
data in each pair, which in this case would be the force since the force values came from the masses we
elected to put at the end of the beam, is generally the z-coordinate. The dependent data, which will be the
y-coordinate, will be the displacement since this is what we measured. The plot command also allows the
user to add a third argument, which is put in single quotes, that allows the user to define the color, symbol,
and line type of the plot. Table C.1 on page App C — 2 of Appendix C shows the different options available
to the user.

During the lab, the instructor will have you create several different graphs in the command window using
various methods of plotting data. For this script, we will represent this data set by using black circles, so
once that part of the demonstration is over, you will be asked to add the following to your script:

% Plot Displacement as a function of Force
plot(Force, Displacement, ’ko’)

Copyright 2009, Gustafson et al.
Lab 3 -8

EGR53L - Fall 2009

3.5.6 Polynomials in MATLAB

At this point, you might be able to state with some certainty whether the data points follow a straight line.
For rudimentary analyses, this may be all the code you need. If you just wanted to know for yourself what
the experiment did, this code would suffice. For this lab, however, you are going to perform some calculations
to determine the best possible straight line, then plot it, to more easily compare the data points and that
line.

The equation for a straight line is a specific case of a polynomial. Often, engineers will want to see if a
data set fits a particular order of polynomial, and if so, what the best coefficients of that polynomial might
be to have the data points collectively as close as possible to the model. The general format for a polynomial
can be written as:

N
y=aoz’ +ajxt + ... + an_12¥ " +aya = g apz"
n=0

MATLAB has a built-in command called polyfit to determine polynomial fits to data. It takes three
arguments: an independent data set (in this case, the force), a dependent data set (displacement), and an
integer N (the order fit desired). This command, however, returns the values of the polynomial coefficients in a
slightly different order from that shown above. Specifically, if the variable P is where you have told MATLAB
to store the polynomial coefficients, the equation that MATLAB will fit for an N** order polynomial is:

N+1
y=PL)a" + P2)aV '+ .+ P(N)z' + P(N +1)2" = > P(i) 2N+
i=1

This is because of the way MATLAB interprets arguments to functions that are supposed to represent

polynomials. To clarify this further, some common polynomials are found in Table 3.1. Note in the
Order N Example Polynomial Representation
First Order | N=1 y=3r+4 P=[3 4]
Second Order | N=2 y=322+4x+5 P=[3 4 5]
Third Order | N=3 | y =323 + 422 + 52 + 6 P=[3 4 5 6]
Third Order | N=3 y = 32° + 5x P=[3 0 5 0]

Table 3.1: Common Polynomial Orders

last case that the far right entry in the P matrix always represents the coefficient of the zeroth power - if
that coefficient happens to be 0, you cannot simply omit it. Similarly, any other “missing” coefficients must
be represented by 0’s in the representational vector for MATLAB to be able to understand the coefficients
properly.

For this lab, you want to perform a first-order polynomial fit on the current data. This will come under
a section of code with the heading

%% Perform calculations

which comes after manipulating the data but before plotting anything.

First, note that fits are generally performed where you solve an equation for the dependent data as a
function of the independent data. This means that the equation to fit will be for displacement as a function
of the force (i.e. Ax = a1F + ag or, using MATLAB’s terminology, Az=P(1) F+P(2)). Add the following
command to your script:

% Use polyfit to find first-order fit polynomials
P = polyfit(Force, Displacement, 1)

(note there is no semi-colon at the end) and save and run your script. Once you fix any errors that may
exist, you will notice that the values for the first order fit’s coefficients are stored in the variable P. Make
sure the slope and intercept presented in the P matrix make sense given the data set.

Copyright 2009, Gustafson et al.
Lab3 -9

EGR53L - Fall 2009

3.5.7 Generate Predictions

Now that we have a polynomial equation representing the best linear fit of the data, we want to plot it on
the same graph as the original data. To do that, you must produce a matrix that contains the numerical
values of that equation over the domain of the independent data.

Remember that to plot a curve in MATLAB, you should provide the plot command with arrays con-

taining the x and y coordinates as well as information about what color, symbol, and/or line style should
be used. The process of creating these vectors will take place in a section of code headed with

hh

Generate predictions

which comes between performing calculations and generating the plots.

(1)

(2)

We first need to generate several points along the z-axis (Force) that can then be plugged into the
polynomial equation. We can accomplish this by using a MATLAB command called 1linspace, which
generates a row vector of equally spaced points. Add the following line to your script:

% Create 100 representational Force values
ForceModel = linspace(min(Force) ,max(Force) ,100);

This creates 100 equally spaced points between the minimum and maximum value in the Force vec-
tor. We will only be making predictions for how the cantilever beam behaves within the range of the
experimental data.

Now we can calculate the corresponding displacement values based on the polynomial equation, which
again is represented by the P vector, at each of the 100 points in the ForceModel vector. To do this
we will use the polyval command. polyval takes a polyfit vector and an independent data set as
arguments. For example, if you were to want to calculate the results of r = #3+2t+5 for t = [1 2 3 4 5],
you could issue the commands:

myCoefs = [1 0 2 5]
t = [1 2 3 4 5]
r = polyval(myCoefs, t)

and MATLAB would calculate:

r=
8 17 38 77 140

You could also perform all the work in one line:

r = polyval([1 0 2 5], [1 2 3 4 5]);

to get the results. Note the 0 in the second entry of myCoefs - recall that you must include coefficients
for all integer powers of the independent value from the highest down to the zeroth power.

For the script, the coefficient vector P and independent model points ForceModel have already been
calculated, so add the command

% Calculate Displacement predictions
DispModel = polyval(P, ForceModel);

Copyright 2009, Gustafson et al.
Lab 3 - 10

EGR53L - Fall 2009

3.5.8 Generating Plots (revisited)

At this stage, we now have another set of data to plot - specifically, we now want to plot the model line on
the same graph as the experimental data points so they may be compared visually. We will use a line this
time to represent the polynomial fit. The code for this section is back in the

hh

Generate and save plots

section and will be added below the first plot command.

Whenever you want to get more than one data set onto a graph, one way to proceed is to tell MATLAB

to hold on to the graph that is already in place and keep adding data sets to it until you are done. You
can tell MATLAB this by typing hold on. While this command is in place, future plot commands will all
use the same graph (though the axes will expand if they need to in order to accommodate the new data
range). When you are ready to start over, issue the hold off command. It is important to note that the
hold on command needs to be given after the first plot command, so that the first plot command clears
out any previous plots. In this particular case, we are only adding one plot to the figure; if you want three
or more plots on one figure you would put the second and subsequent plot commands between the hold on
and hold off lines.

1)

(2)

(3)

(4)

At this point in your script, you will want to add the following lines of code:

% Turn hold on, plot the model values, and turn hold off
hold on

plot (ForceModel, DispModel, ’k-’)

hold off

Many times, it will be useful to turn a grid on to more easily determine where particular data points
are located on a graph. To add a grid to this figure window, add

% Turn the grid on
grid on

to your code.

Now, to create a proper graph!, we need to add labels. The commands x1label will add a label on the
z-axis, ylabel will add a label to the y-axis, and title will generate a title. For this particular graph,
add the following commands:

% Label and title the graph

xlabel (’Force (Newtons)’)

ylabel (’Displacement (meters)’)

title(’Displacement vs. Force for Cantilever.dat (NET ID)?’)

where NET ID is your NET ID. Every graph you produce for this class should have your NET ID in
the title as further proof that it is your work. Now you should save and run your script to produce a
graph with the original data as black circles and the model line as a straight line.

This is the final plot we will use to analyze the data. You can estimate the “goodness of fit” by looking
at the overall spacing between the model line and each of the data points. If each point is relatively
close to the line, this is likely a good fit; if several or all of the points are far away, it is not as good.
Later in the course, we will learn quantitative methods that determine this goodness of fit. Since we
want to print this plot out, add the command

% Save the graph to PostScript
print -deps RunCanPlot

L Another way of saying this is, “Now, to create a graph for which you can receive more than zero credit...”

Copyright 2009, Gustafson et al.
Lab 3 - 11

EGR53L - Fall 2009

to the end of your script. This will tell MATLAB to generate a PostScript file with the current plot
it in called RunCanPlot.eps - it will not actually send the graph to the ePrint queue. Note: if the file
name you tell MATLAB to print to has no dots in the title, MATLAB will automatically add the .eps
to the end.

As an aside, to view this graph without including it in a WTEX file, go to the terminal window (not the
MATLAB command window) and type

kghostview RunCanPlot.eps &

For this class, you will generally import the graphs as part of a lab report and print them out that way. If
you have some need to print out a MATLAB graph on its own, however, you can send the file to the printer
from kghostview. Another way to print a file is, in Unix, type 1lpr FILENAME and the file will be sent to
the ePrint queue.

Congratulations, you have completed the walk through portion of this lab! If you have followed the in-
structions correctly, your plot should look like Figure 3.1. Now move on to the assignment and documentation
portions of the lab.

Displacement vs. Force for Cantilever.dat (NET ID)
0.03 T T T T T T T

0.025

0.02
o
[)
b
E
& 0.015
£
[}
Q
8
o
@
[a)

0.01

0.005

0 ! ! ! ! ! ! !
0 1 2 3 4 5 6 7 8

Force (Newtons)

Figure 3.1: Linear Fit of Cantilever Beam Data

Copyright 2009, Gustafson et al.
Lab 3 - 12

EGR53L - Fall 2009

3.6 The Assignment

Since you have now acquired some MATLAB tools in your engineer’s toolbox, you should be able to write a
program in MATLAB that will be of use in analyzing data. You are going to write programs that will load
displacement and mass data for three different data sets and then determine the parameters for a first order
fit. We are interested in the parameters of that fit in the equation:

Displacement = Compliance x Force + Initial Displacement

where Force is your independent variable, Displacement is your dependent variable, and Compliance and
Initial Displacement are the parameters you will find given your fit (that is, P(1) and P(2), respectively).
We also want to know, qualitatively, how good the fit is. Later in the course, we will cover methods for
determining quantitatively how good a fit is.

3.6.1 What the .m-files Should Do

Basically the .m file is going to repeat line for line the code that we have already typed, only for different data
files. Please complete the following steps for each of the three additional data files (Beaml.dat, Beam2.dat,
and Beam3.dat) you copied from the public directory for this lab. You should write three scripts - one for
each data file - but can copy and paste your work as appropriate. Make sure that the title of each plot
includes not only the words Displacement vs. Force but also an indication of which of the three data files
is being used as well as your NET ID. The instructions below specifically refer to the Beaml.dat.

1. Load a data set. For example if you are loading Beam1.dat, use load Beaml.dat:

2. Separate the data into a mass vector and a displacement vector. For example if you have loaded the
Beaml.dat file and wish to extract the Mass data use the command Mass=Beam1(:,1);

3. Convert the mass in kilograms to a force in Newtons and convert the units of displacement from inches
to meters.

4. Plot a displacement versus force graph, remembering that the independent values (force) go on the
x-axis. Use black circles without lines to represent the data.

5. Determine a first-order fit for displacement (the dependent variable) as a function of the force using
polyfit.

6. Generate a model of this fit using at least 100 points and plot it, using black lines, on the same graph
as above, using the results of the polyfit command as well as the linspace, polyval, and plot
commands.

7. Be sure to label the graph properly using the xlabel, ylabel, and title commands.
8. Add a grid to the graph using the grid on command.

9. Save this figure to a PostScript file BeamN_graph . eps using the print -deps command. For example,
for Beaml.dat, the file would be called Beam1_graph. eps.

While writing your code, pay special attention to which lines of code you must change from script to script
and which code remains the same. Later in the course, we will work on making code more flexible and
interactive so that more data files can be analyzed using fewer changes.

Copyright 2009, Gustafson et al.
Lab 3 - 13

EGR53L - Fall 2009

3.6.2 The Lab Report

The lab report will contain the following information:

e A brief description of what your program does and what questions you are expected to answer based
on the data and graphs you obtain from it.

e The original data for each of your three data sets. Put each set in a tabular environment - for example:

Cantilever.dat
Mass | Disp.
(k) | (in)
0.0000 | 0.0052
0.7971 | 1.0000

The code for the table above is simply:

\begin{center}

\begin{tabular}{lclcl|}\hline
\multicolumn{2}{|c|}{Cantilever.dat}\\ \hline
{\bf Mass} & {\bf Disp.}\\

(kg) & (in)\\ \hline

0.0000& 0.0052\\
0.7971%& 1.0000\\ \hline
\end{tabular}
\end{center}

You can use either the format short format for numbers, shown above, or the format short e version
MATLAB produces.

e Produce an estimate of the Compliance (P(1)) and Initial Displacement (P(2)) for each of the data
files based on your polynomial fit. Put all estimates for the three beams in one tabular environment.
Clearly label which constant your are giving and for which data file. For example:

Data File | Compliance (UNITS) | Displacement (UNITS)
Beaml.dat « I6]
Beam2.dat y 1)
Beam3.dat € ¢

You must determine and include the appropriate units, and you will replace the Greek letters above
with the appropriate values. You can use the format short e version of the numbers here.

e The required figures will be placed in an appendix, though you can use the ref and pageref commands
in I TEX to refer to them in the body of the report. The skeleton for the lab report shows sample code
for how to accomplish this, as well as code to automatically produce a list of figures. More detailed
information on importing figures is given in the Appendix B.

e Write a paragraph explaining the results you obtained. Also state, based on the graphical evidence
you have generated, which beams act like a spring and which do not (i.e. how well does the equation
model the force-displacement relationship for each data set?).

Copyright 2009, Gustafson et al.
Lab 3 -14

EGR53L - Fall 2009

e Appendices

— A copy of each of the three files you used. Each script will go in its own appendix, and code is
provided in the skeleton for how to accomplish this.

— One figure for each data set, including the data and the model line. It is critical that the title of
the plot include a reference the specific data file you used for that graph as well as your Net ID.

3.6.3 Processing the Lab Report

Because the lab report contains label, ref, and pageref commands, as well as a table of contents and a list
of figures, you may need to run KTEX on it three times before it is properly compiled! The first time through,
ETEX will figure out to what and where the labels refer. The second time through, I TEX will replace all the
ref and pageref commands with the appropriate information. The third time through, IEXTEX will correct
any changes in the document caused by the replacement characters. In UNIX, the easiest way to repeat the
previous command is simply to hit the up-arrow and hit return.

Sadly, the most common mistakes on lab reports involve spelling, grammar, and carelessness. There is a
Spell Checking option in emacs under the Tools menu. Be sure to use it. Also make sure to re-read your
document one last time before submitting it; you may be surprised at the typographical and grammatical
errors you find in the “final” run-through. Almost as surprised at how many typographical and grammatical
errors you find in this document, despite years of “final” runs-through.

Copyright 2009, Gustafson et al.
Lab 3 - 15

EGR53L - Fall 2009

© 00 N O U i W N

N N N N N R S I I S I R R S I R I R T I I T T T N e S i gy Gy S G U
ST E W RO I ARERRND DO XTI A REWN—,O©OW-IO U s WNR O

3.7 Code From Lab

The following is a copy of the code written while following the directions included in this lab, including extra
comments and line numbers:

%% Initialize the workspace

% Clear all variables

clear

% Change display to short exponential format
format short e

% Bring up a figure window

figure(1)

% Clear the figure window

clf

%% Load and manipulate the data

% Load data from Cantilever.dat

load Cantilever.dat

% Copy data from each column into new variables
Mass = Cantilever(:,1);

Displacement = Cantilever(:,2);

% Convert Mass to a Force measurement

Force = Mass*9.81;

% Convert Displacement in inches to meters
Displacement = (Displacement*2.54)/100;

%% Perform calculations
% Use polyfit to find first-order fit polynomials
P = polyfit(Force, Displacement, 1)

%% Generate predictions

% Create 100 representational Force values
ForceModel = linspace(min(Force) ,max(Force),100);
% Calculate Displacement predictions

DispModel = polyval(P, ForceModel);

%% Generate and save plots
% Plot Displacement as a function of Force

plot(Force, Displacement, ’ko’)

% Turn hold on, plot the model values, and turn hold off
hold on

plot (ForceModel, DispModel, ’k-’)

hold off

% Turn the grid on

grid on

% Label and title the graph

xlabel (’Force (Newtons)’)

ylabel(’Displacement (meters)’)

title(’Displacement vs. Force for Cantilever.dat (NET ID)’)
% Save the graph to PostScript

print -deps RunCanPlot

Copyright 2009, Gustafson et al.
Lab 3 - 16

