EGR 53L – Fall 2009 PTEX Assignment

Anne O. Nymous (aon) Lab Section 1, Tuesday 8:30-11:20 Due September 4, 2009

I have adhered to the Duke Community Standard in completing this assignment. I understand that a violation of the Standard can result in failure of this assignment, failure of this course, and/or suspension from Duke University.

Contents

1	Equations	2
2	Tables using tabular and array2.1 Using tabular2.2 Using array	2 2 2
3	Comments	
A	Codes A.1 Listing of sample header for original code A.2 Listing of sample header for modified code	
в	Figures	
\mathbf{L}	ist of Figures	
	1 Drawing from ME 150L test. 2 Sample MATLAB figure.	

1 Equations

$$\int_{-\infty}^{\infty} u(\tau)u(t-\tau) d\tau = u(t) \int_{0}^{t} d\tau = tu(t)$$
$$\frac{df(x)}{dx} = \lim_{\Delta x \to 0} \frac{f(x+\Delta x) - f(x)}{\Delta x}$$
$$\det\left(\begin{bmatrix} a_{1,1} & a_{1,2} \\ a_{2,1} & a_{2,2} \end{bmatrix}\right) = a_{1,1}a_{2,2} - a_{1,2}a_{2,1}$$
$$D = \pm \sqrt{a^{2}\left(\frac{\xi+\eta}{2}\right) \pm \sqrt{a^{4}\left(\frac{\xi-\eta}{2}\right)^{2} + a^{2}\mathrm{Ra}\xi}$$

2 Tables using tabular and array

2.1 Using tabular

Chemical equation	Description
$\Delta G = \Delta H - T \Delta S$	Gibbs free energy
$H_2 + \frac{1}{2} O_2 \rightarrow H_2 O$	Water

2.2 Using array

Equation	Description
$\vec{v} = v_x \hat{\imath} + v_y \hat{\jmath} + v_z \hat{k}$	Resolution into Components
$v^2 = v_0^2 + 2a\Delta x$	Velocity formula

3 Comments

Things I learned in this assignment:

- Using the align environment to typeset equations
- Using \$ to enter math mode in a line of text to type shorter mathematical expressions like 10^6 and Greek letters like Δ
- Using mbox to enter text mode in a math environment
- Changing the appearance of fonts to make words **bold**, *italics*, or **typewriter font**
- Using the tabular and array environments
- Using listinginput to import text files
- Using epsfig to import figures
- Add another thing you learned here your first choice.
- Add another thing you learned here your second choice.
- Add another thing you learned here your third choice.

A Codes

A.1 Listing of sample header for original code

```
% [Function or Script Name]
 1
    % [Your Name]
2
    % [Date Written]
3
4
    % I have neither given nor received improper assistance in the
5
6
    % completion of this assignment. I understand that a violation of the
    % statement can result in failure of this assignment, failure of this
7
    % course, and/or suspension from Duke University.
8
9
    % I have thus adhered to the Duke Community Standard in
10
    % completing this assignment
11
    % Signed: [Your acpub login ID]
```

A.2 Listing of sample header for modified code

```
% [Function or Script Name]
1
2
     % [Your Name]
3
     % [Date Modified]
     % Based on: [Original Script or Function]
4
     % Written by: [Original Author]
5
6
     % I have neither given nor received improper assistance in the
7
     \% completion of this assignment. I understand that a violation of the
8
     % statement can result in failure of this assignment, failure of this
9
10
     % course, and/or suspension from Duke University.
     % I have thus adhered to the Duke Community Standard in
11
12
     % completing this assignment
13
     % Signed: [Your acpub login ID]
```

B Figures

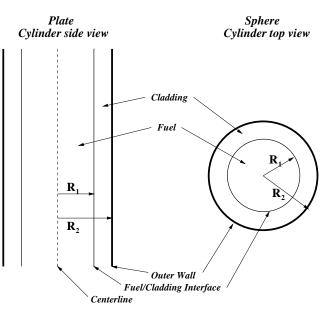


Figure 1: Drawing from ME 150L test.

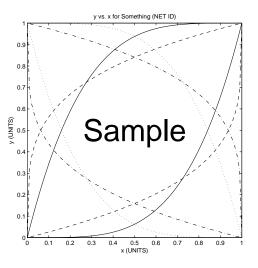


Figure 2: Sample MATLAB figure.