
EGR 53L - Fall 2009

Lab 13:

Ordinary Differential Equations

13.1 Introduction

This lab is aimed at introducing techniques for solving initial-value problems involving ordinary differential
equations using MATLAB. Specifically, the lab will focus on solving equations that can be written as:

dy

dt
= f(t, y, k)

where y represents an array of dependent variables, t represents the independent variable, and k represents
whatever array of constants might be needed for the system. Note that although the equation above is a
first-order differential equation, higher-order equations can be re-written to satisfy the form above. The
information you will need to complete this lab is mainly written on the Pundit page MATLAB:Ordinary

Differential Equations so you should be sure to read through that page and the examples. By the end
of lab, you should be able to write functions to model and solve for multiple-dimension linear and nonlinear
ordinary differential equations.

13.2 Resources

The additional resources required for this assignment include:

• Books: Chapra

• Pratt Pundit Pages: MATLAB:Ordinary Differential Equations and the two subpages linked therein

– MATLAB:Ordinary Differential Equations/Templates

– MATLAB:Ordinary Differential Equations/Examples

13.3 Getting Started

1. Log into one of the PCs in the lab using your NET ID. Be sure it is set to log on to acpub.

2. Start X-Win 32 on the PC. Roll the mouse over the X to make sure it is set to Display 0. If not, quit
all instances of X-Win 32 and re-open X-Win 32.

3. Start PuTTY on the PC. Load a session, make sure X11 Tunneling is set in the SSH category and
connect.

4. Once connected to a machine, switch into your EGR53 directory and create a lab13 directory inside it:

cd EGR53

mkdir lab13

5. Switch to your ∼/EGR53/lab13 directory:

cd lab13

6. Copy all relevant files from Dr. G’s public lab13 directory:

cp -i ∼mrg/public/EGR53/lab13/* .

Do not forget the “.” at the end.

7. Open MATLAB by typing matlab & at the prompt that appears in your terminal window. It will take
MATLAB a few seconds to start up.
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13.4 Problems

13.4.1 Chapra Chapter 20, Problem 4

This problem investigates population growth using the population of the world. You will complete the
differential function and the execution script to run it in order to simulate this system and determine a good
value for the growth rate. You will use the data contained in the table presented with the problem. One of
the files you copied is the WorldPop.mat file, which has vectors called t and p for the time in years and the
population in millions, respectively.

You will use a guess-and-check method for finding the appropriate value of kg. To help with this, the
execution script has a plot showing both the original data (p vs. t) and your calculated data yout vs.
tout). In addition to completing the required file name and system initialization tasks in the first ten lines
of the program, you will add a statistical analysis to find a coefficient of determination between the actual
population data (p) and the data you obtained using ode45 (yout).

Keep changing the value of the constant and re-running the script until you get an r2 of at least 0.995.
You should be able to figure out whether to make the value of the constant larger or smaller based on the
graph. You will need to show the TA your differential function and your execution script as well as your
final values for the constant kg and the coefficient of determination r2.

Note: this problem could be better solved using fminsearch, leaving as free parameters the initial
population and the growth rate. The “tricky part” is that MATLAB’s ODE solvers send out the interesting
information - the yout values - as the second matrix, making it difficult/impossible to use a single anonymous
function to construct the required fSSR.

13.4.2 Chapra Chapter 20, Problem 14

A more complicated model of population dynamics involves what is known as the Lotka-Volterra equations,
also known as a predator-prey model. The model takes into account the fact that the predators and prey
interact in ways that change the growth rate of each other. The equations can be written as follows (from
Chapra, p. 504 with a slight change to make them state equations by writing the “prey” as y1 and the
“predators” as y2):

dy1

dt
= ay1 − by1y2

dy2

dt
= −cy2 + dy1y2

“where ... a = the prey growth rate, c = the predator death rate, and b and d = the rates characterizing
the effect of the predator-prey interactions on the prey death and the predator growth, respectively.”

Since there are two linked differential equations, the ODE solver needs to keep track of two values - the
number of prey and the number of predators. The function with the differential equation must return the
values of the derivatives of each population in a column vector.

You will use the data contained in the table presented with the problem - one of the files you copied is
the IsleRoyale.mat file, which has vectors called Year, Moose, and Wolves for the time in years and the
populations of the animals, respectively. Most of the execution script is written - you will need to add in the
initial state values and the constants. You will have to write almost all the code for the differential equation
file, however.

For this particular problem, a graph called a phase plot may be more useful than simply plotting the states
themselves as functions of time. A phase plot consists of plotting one of the states of the equation versus
the other - in this case, the Wolves vs. the Moose (literally). The code to accomplish this, PredPreyPlot.m,
is listed at the end of the lab handout.

Note: This is another case where fminsearch may have come in handy. For one thing, the statistics
should show that the model fairly accurately predicts the moose count but is woefully inaccurate when it
comes to wolves. The fminsearch command could be used with six free parameters for this initial value
problem - the four Lotka-Volterra parameters and the two initial animal populations - to minimize some
statistical measure. In this case, some two-dimensional version of the coefficient of determination would be
needed since there are two variables being modeled.

Copyright 2009, Gustafson et al.
Lab 13 – 2



EGR53L - Fall 2009

13.4.3 Cannon Ranging

Another common example using differential equations involves projectile motion. If a cannonball is launched
into the air from some initial location (rx(0), ry(0)) at some initial velocity (vx(0), vy(0)) on Earth, then its
motion can be modeled by the equations:

d2rx(t)

dt2
= 0

d2ry(t)

dt2
= −g

Since these are second order differential equations, they must be broken down into two first-order differential
equations each. For the x-direction variables, the position rx can be stored in the first state (y1) and the
velocity vx can be stored in the second (y2). The differential equation for the first state is simple - the
derivative of the x position is the x velocity, and so the derivative of the first state is the second state:

dy1

dt
= y2

The derivative of the x velocity is the x acceleration, so the function for the derivative of the second state
comes from the left-hand second-order differential equation above; that is:

d2rx(t)

dt2
=

dy2

dt2
= 0

For the y-direction variables the position ry can be stored in the third state (y3) and the velocity vy can
be stored in the fourth (y4). As above for the derivative of the x position, the derivative of the y position is
the y velocity so the derivative of the third state is the fourth state:

dy3

dt
= y4

The derivative of the y velocity is the y acceleration which comes from the right-hand second-order differential
equation above:

d2ry(t)

dt2
=

dy4

dt2
= −g

Given all this, you will complete the function CannonDiff to return the four first derivatives for the four
states - gravity should be passed in using the const variable. Then finish the script RunCannonDiff.m that
will use CannonDiff to solve the differential equation for a cannonball with an initial position of (0 m, 10
m) and an initial velocity of 20 m/s at some given angle. Your job is to use the code to figure out the two
unique angles, in degrees, required to get the cannonball to hit a target at (20 m, 0 m) and then determine
the times at which the cannonball hits for each. Your ranging must be such that the distance from the point
(20 m, 0 m) to the nearest calculated position of the cannonball must be less than 0.1. This will require
guess-and-check with the angle as well as using more than 100 points in the time span. You may also want to
change your ending time if the cannonball either isn’t landing or is going thousands of meters under ground.

There are some plot commands already in the code to help with this task. The top left plot in the first
figure shows the y values as a function of time, the bottom right plot shows the x value as a function of
time except for this plot the independent and dependent axes are swapped. The top right plot shows y as a
function of x. In each case, a blue line represents the desired x value and a red line represents the desired y

value. In the zoomed plot and the top right plot of the first figure, the target is marked with a purple star.
You will need to show the TA your initial angles and the times it takes for the cannonball to hit the target.

Note: (you knew it was coming) - This is yet another case where fminsearch would have been able to
help solve the problem. In fact, fminsearch would have been able to find not only the angle but also the
exact time at which the cannonball would hit the target by allowing the maximum time to also be a free
parameter.
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13.5 Templates

13.5.1 Differential Equation Template

1 function dydt = GeneralDiff(t, y, k)

2 % Template for calculating first derivatives of state variables

3 % t is time

4 % y is the state vector

5 % k contains any required constants

6 % dydt must be a column vector

7 dydt =

13.5.2 Script Template

1 % Template for using an ODE solver in MATLAB

2 % tout and yout will be the time and state variables

3

4 % Be sure to change name of file containing derivatives,

5 % time span, initial values, and any constants, as well

6 % as setting the flag for whether to make state plots

7

8 % Set name of file containing derivatives

9 DiffFileName = ’’;

10

11 % Set up time span, initial value(s), and constant(s)

12 % Note: Variables should be in columns

13 tspan = ;

14 yinit = ;

15 k = ;

16

17 % Determine if states should be plotted

18 PlotStates = 1;

19

20 %% Under the hood

21 % Use ODE function of choice to get output times and states

22 DE = eval(sprintf(’@(t, y, k) %s(t,y,k)’, DiffFileName))

23 [tout, yout] = ode45(@(t,y) DE(t,y,k), tspan, yinit);

24

25 % Plot results

26 if PlotStates

27 StatePlotter(tout, yout)

28 end
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13.5.3 Predator-Prey Data Plotter

1 % PredPreyPlot.m

2 % Michael R. Gustafson II - 2007

3

4 % Requires Time, Prey, Pred, PreyHat, and PredHat

5 % If no PredHat or PreyHat, they are set to 0

6

7 % Axis limits

8 TAXIS = [min(Time) max(Time)];

9 TAXIS = TAXIS + 0.1 * [-1 1] * diff(TAXIS);

10 XAXIS = [min([Prey; PreyHat]) max([Prey; PreyHat])];

11 XAXIS = XAXIS + 0.1 * [-1 1] * diff(XAXIS);

12 YAXIS = [min([Pred; PredHat]) max([Pred; PredHat])];

13 YAXIS = YAXIS + 0.1 * [-1 1] * diff(YAXIS);

14

15 % Plot values

16 subplot(2,2,1)

17 plot(Time, Pred, ’ks:’, tout, PredHat, ’r--o’);

18 xlabel(’Time’); ylabel(’Pred’); legend(’Data’, ’Estimates’, 0)

19 title(’Predator Population vs. Time’);

20 axis([TAXIS YAXIS])

21

22 subplot(2,2,3)

23 plot(Time, Prey, ’ks:’, ...

24 tout, PreyHat, ’r--o’);

25 xlabel(’Time’); ylabel(’Prey’); legend(’Data’, ’Estimates’, 0)

26 title(’Prey Population vs. Time’);

27 axis([TAXIS XAXIS])

28

29 subplot(2,2,4)

30 plot(Prey, Time, ’ks:’, ...

31 PreyHat, tout,’r--o’);

32 xlabel(’Prey’); ylabel(’Time’); legend(’Data’, ’Estimates’, 0)

33 title(’Time vs. Prey Population’);

34 axis([XAXIS TAXIS])

35

36 subplot(2,2,2)

37 plot(Prey, Pred, ’ks:’, ...

38 PreyHat, PredHat, ’r--o’);

39 xlabel(’Prey’); ylabel(’Pred’); legend(’Data’, ’Estimates’, 0)

40 title(’Predator Population vs. Prey Population’);

41 axis([XAXIS YAXIS])
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