
EGR 53L - Fall 2009

DAQ 4:

Aliasing and Frequency Space

4.1 Introduction

For this laboratory, you will be further investigating the use of the DAQ card to sample and store musical
information. Specifically, you will be able to see and hear what was happening with the different sampling
rates from the previous audio lab and will learn what the term “aliasing” means with respect to sampling
data. You will also learn how to manipulate audio information in the frequency domain and convert signals
between their time and frequency representations.

4.2 Resources

The additional resources required for this assignment include:

• Books: None

• Pratt Pundit Pages: MATLAB:CB-68LP Pinout,
http://pundit.pratt.duke.edu/wiki/EGR 53/DAQ Audio 2

• Lab Manual Appendices: None

4.3 Getting Started

1. Each lab group should have one person sit at the PC that has the patch of tape (blue, green, or red)
on it. This is not the same as the strip with the computer’s name on it - it will literally be a small
patch of tape all by itself.

2. Set the machine to “Log on to” ...(this computer) and use the “User name” mrglocal and the
“Password” p1p2dell (that is p-ONE-p-TWO-d-e-l-l). The other lab partner can log into the other
computer either using the mrglocal account or any other valid NET ID (as log as the “Log on to” is
set to Kerberos). You do not need to run X-Win or PuTTY at all on either computer.

3. Start MATLAB on the PC with the tape on it. The first time MATLAB is run, it may take some time
to start up.

4. Once MATLAB starts, make sure the Current Directory listed at the top of the MATLAB window
is

C:\Documents and Settings\labuser\My Documents\MATLAB

5. In the Current Directory window on the left, select and delete any files in the MATLAB directory.

4.4 Equipment

The lab this week requires essentially the same data acquisition system as the first audio lab week. You will
also need headphones and an audio source. You do not have to use the same audio clip nor do you have to
be paired up with the same person as last time, however. The network listing is given on page DAQ 4 – 10
in Table 4.1. You will need one red wire and one black wire in addition to a screwdriver.

Copyright 2009, Gustafson et al.
DAQ 4 – 1

EGR53L - Fall 2009

4.5 Scripts

For this week, some parts of the scripts you need have already been written. You will be making modifications
to them in order to understand aliasing and frequency space. The files are at:

http://www.duke.edu/~mrg/DAQS/DAQaudio2/

and are called AliasDemo.m, freq1.m, freq2.m, EqualizerDone.m, and MaskMusic.m. You should also
copy the MyChirp.mat file, which contains a sound that sweeps through frequencies from 0 Hz to two octaves
above middle A (1760 Hz). Open a web browser (IE), point to the URL above, and then right click on the
file you want. Choose Save Target As... and save the files in

C:\ Documents and Settings\mrglocal\My Documents\MATLAB

Copies of the script files are at the end of this handout so you can take notes regarding how they work.

4.6 Frequency Space

One method of interpolating between points uses polynomial powers to represent the data - this is the
polynomial fit that you used. To recap, if there is some data set x(n) that has N known values for evenly
spaced, integer values of n, we could use an N − 1th order polynomial:

F (n) = P (1) nN−1 + P (2) nN−2 + ... + P (N − 1) n + P (N) =

N
∑

k=1

P (k) nN−k

Now there are two fundamentally different ways to represent the data - either as a table of values for a range
of n’s or as a set of coefficients P . While the former case tells exactly what value the function takes on at
a particular time or location (depending on the meaning of n), the latter version may give a better overall
impression of the shape of the function that fits the data. For example, given the following three points:

n 1 2 3

x(n) 1 3 0

you could use the MATLAB commands:

n = [1 2 3];

x = [1 3 0];

P = polyfit(n, x, 2)

find the coefficients P = [−2.5, 9.5,−6]. This means the data can also be represented by the quadratic
equation:

F (n) = −2.5n2 + 9.5n − 6

From this equation, it is clear that the data forms a parabola that opens down (negative coefficient on n2

term) and has an x intercept of -6 (coefficient on n0 term). If this is the information you were looking for,
the polynomial representation is more useful than the time or space based one.

For musical analysis and manipulation, generally it is the frequency content that is most interesting.
Given that, another method of interpolating points can be used that is based on cosines and sines at different
frequencies rather than on different orders of polynomials. The formula for this is decidedly more complex:

F (n) =
1

N

N
∑

k=1

X(k)e
j2π(k−1)(n−1)

N

where the X(k) are complex numbers. To explain this formula, using Euler’s relation, which states that:

ejθ = cos(θ) + j sin(θ)

Copyright 2009, Gustafson et al.
DAQ 4 – 2

EGR53L - Fall 2009

and you can rewrite the interpolation as

F (n) =
1

N

N
∑

k=1

X(k)

(

cos

(

2π(k − 1)(n − 1)

N

)

+ j sin

(

2π(k − 1)(n − 1)

N

))

The argument for the trig terms can be re-written as:

2π(k − 1)(n − 1)

N
=

2π

N
(k − 1)(n − 1) = ω0(k − 1)(n − 1)

where ω0 is the fundamental frequency for the interpolation, making ω0(k − 1) is the frequency of the kth
term in the summation. This leaves an interpolation function of:

F (n) =
1

N

N
∑

k=1

X(k) (cos (ω0(k − 1)(n − 1)) + j sin (ω0(k − 1)(n − 1)))

Though this is a complicated formula, the most important part to notice is the frequency of the individual
terms, ω0(k − 1). The magnitudes of X(k) are therefore relative measures of the importance of a particular
frequency within the signal. Furthermore, from the summation, it is clear that there is a maximum possible
frequency that can be represented. In fact, this is a little misleading, in that the highest frequency you
will be able to represent with the summation is not ω0(N − 1) but half that (or slightly less), as will be
demonstrated with the first three script files you copied.

Despite the algebraic complexity of this particular interpolation scheme, it gives a method by which some
time (or space) series x(n) can be represented by values indicating how much of a particular frequency (the
magnitude of X(k)) exists in a particular signal. This method of representing the data uses the Discrete

Fourier Transform (or DFT). As mentioned, the X(k) will generally be complex numbers with the angle of
the complex number indicating the phase of that particular frequency. For example, a phase of 0 degrees
represents a pure cosine at a particular frequency. The phase information can be extremely important to
engineers but for today, only the magnitudes will be described.

4.7 Demonstration of the Influence of the Sampling Rate

To begin the study of sampling rates, run the AliasDemo script. In all five cases, the same signal:

y = cos(20πt)

which has a fundamental frequency f0 of 10 Hz or fundamental angular frequency ω0 = 2πf0 of 20π rad/s.
On the left side, the signal is shown as a black line for 1 second. To make the line, the signal was sampled
500 times per second - this is called the sampling frequency or sampling rate, and 500 Hz was chosen because
it is more than sufficient to show the true nature of a 10 Hz signal.

4.7.1 Reconstruction Using Samples

The red dots are samples taken at different rates ranging from a maximum of fs = 100 Hz to a minimum
of fs = 2 Hz. These samples are then plotted using MATLAB’s built-in interpolation scheme for connecting
data points and displayed on the right side of the screen. Note that even though each set of data is sampled
from the same original equation, the reconstructions look quite different depending on the sample rate.

The first case, where fs = 100 Hz, is a fairly good representation of the signal. We are taking 10 samples
for each period of the sinusoid, so there is enough information to reconstruct a reasonable approximation
to the signal. In the second case, the sampling rate of 20 Hz means we are only taking two samples per
period. For a cosine, this means one at the peak and one at the trough for each period. While we have lost
all semblance of curvature, the signal still appears to have the same period. The apparent period changes,
however, as the sampling rate is further reduced.

Copyright 2009, Gustafson et al.
DAQ 4 – 3

EGR53L - Fall 2009

4.7.2 Ramifications of Reducing the Sample Rate

When fs = 15 Hz, we are no longer taking enough samples per cycle to capture the essence of a single
period. If you look at the reconstructed graph, not only is it blocky, the apparent period has somehow
doubled! Decreasing the sampling rate further, when fs = 11 Hz, or just above the signal frequency, the
appearance of the reconstructed signal is of a fairly convincing cosine - at one tenth the original frequency.
In the last pairing, when fs = 2 Hz (meaning one sample is taken for every five periods of the original signal),
the reconstructed signal appears to be a constant value.

In the last four cases, a phenomenon known as aliasing has occurred; it is called aliasing because one
frequency is masquerading as another due to the sampling rate. The tipping point for aliasing is when the
sampling rate is double or less than the highest frequency component in the signal. Any part of the signal
oscillating faster than half the sampling frequency will, in the reconstructed signal, appear at a different,
lower frequency. The name given to the lowest frequency that will avoid aliasing for a given signal is the
Nyquist rate of the signal, which is defined as twice the maximum frequency contained in the signal.1

4.7.3 Determining Aliased Frequencies

An interesting part of aliasing is how to determine the frequency to which a particular signal is aliased.
When the sampling rate is more than twice the fastest part of a signal, the reconstructed frequencies are the
same as the original. For parts of the signal at exactly half the rate, there can be deconstructive interference
as a result of phase. Note that when fs = 20 Hz, the signal is basically at 0 the entire time (the nonzero
magnitude is a result of roundoff error).

As the sampling rate of the system decreases below the Nyquist rate of the signal, the reconstructed
frequency begins to decrease linearly until the apparent frequency is 0 Hz. For example, when fs = 15 Hz,
the maximum frequency signal that can be reconstructed properly is at 7.5 Hz. The signal is at 10 Hz,
which is 2.5 Hz faster than this sampling rate can handle. The reconstructed signal will end up resembling
a frequency that is 2.5 Hz slower than the 7.5 Hz maximum, or (7.5-2.5)=5 Hz. It will also have a different
phase - notice that the signal sampled at 15 Hz starts at zero and goes down first.

Continuing to slow down the sampling rate, when fs = 11 Hz, the maximum frequency this can capture
properly is 5.5 Hz. The signal is 4.5 Hz faster, so the reconstructed signal is 4.5 Hz slower than the maximum
possible - or (5.5-4.5)=1 Hz. If the 10 Hz signal were sampled at 10 Hz, the apparent frequency of the signal
would be 0 Hz.

If the sampling rate is further decreased, the apparent frequency of the reconstructed signal speeds up

again. Essentially, frequency space folds in on itself, bouncing back and forth between the maximum possible
reconstructed frequency (fs/2) and 0 Hz. For the signal sampled at 7 Hz, then, the maximum properly
reconstructed frequency is 3.5 Hz. The apparent reconstructed frequency can be calculated by first going
out to 3.5 Hz and noting there is 6.5 Hz remaining. Coming back into 0 Hz eliminates another 3.5 Hz leaving
3 Hz to go. The reconstructed frequency is thus 3 Hz and it will have the same phase as the original.

1Simon Haykin and Barry Van Veen, Signals and Systems (New Jersey: John Wiley and Sons, 2005), p. 374

Copyright 2009, Gustafson et al.
DAQ 4 – 4

EGR53L - Fall 2009

4.8 Visual Aliasing and Frequency Space Demonstration

What this all means is that by looking at the relative magnitudes of the values of X(k) we can see which
frequencies are more prevalent and which are less, but we must also keep in mind some information may
be aliased. You will be using the freq1.m script to examine this. The code for this script is at the end
of this lab. The script takes information about a sampling rate as well as up to three cosine amplitude
and frequency pairs. It then plots the signal for two seconds as well as the frequency content for those two
seconds.

You will be running the following ten different argument combinations to further your understanding of
frequency space as well as aliasing. The instructor will tell you which case to run when. Note that in the
ten primary cases, the sampling frequency is 100 Hz, meaning two hundred samples are collected over the
two second interval. The sampling rate is changed for the three alternate cases, denoted by an “a.”

Case Code x(t)

1 freq1(100, 1, 0) 1

2 freq1(100, 1, 10) cos(20 ∗ π ∗ t)

3 freq1(100, 1, 50) cos(100 ∗ π ∗ t)

4 freq1(100, 1, 90) cos(180 ∗ π ∗ t)

4a freq1(200, 1, 90) cos(180 ∗ π ∗ t)

5 freq1(100, 1, 10, 2, 50) cos(20 ∗ π ∗ t) + 2 cos(100 ∗ π ∗ t)

6 freq1(100, 1, 10, 2, 80) cos(20 ∗ π ∗ t) + 2 cos(160 ∗ π ∗ t)

7 freq1(100, 1, 10, 2, 90) cos(20 ∗ π ∗ t) + 2 cos(180 ∗ π ∗ t)

7a freq1(200, 1, 10, 2, 90) cos(20 ∗ π ∗ t) + 2 cos(180 ∗ π ∗ t)

8 freq1(100, 1, 10, 2, 30, 4, 40) cos(20 ∗ π ∗ t) + 2 cos(60 ∗ π ∗ t) + 4 cos(80 ∗ π ∗ t)

8a freq1(???, 1, 10, 2, 30, 4, 40) cos(20 ∗ π ∗ t) + 2 cos(60 ∗ π ∗ t) + 4 cos(80 ∗ π ∗ t)

9 freq1(100, 1, 10, 2, 30, 4, 80) cos(20 ∗ π ∗ t) + 2 cos(60 ∗ π ∗ t) + 4 cos(160 ∗ π ∗ t)

10 freq1(100, 1, 10, 2, 30, 4, 90) cos(20 ∗ π ∗ t) + 2 cos(60 ∗ π ∗ t) + 4 cos(180 ∗ π ∗ t)

In the figure window, the top graph shows the sampled and reconstructed signal while the bottom bars
represent the magnitudes of the X(k) values given in the DFT equation. What you will see in the ten cases
is as follows:

(1) In the first case, the signal in time is a constant value of 1. In the lower plot, there is a single bar at a
frequency f = 0 Hz. The height of this bar is determined both by the amplitude of the signal (1) and
the total number of samples (200).

(2) Running the second case, you will see a cosine at a frequency of 10 Hz in the top window - this relates
to 20 periods across the screen since the period T is 0.1 sec. In the bottom window, you will see two
bars, one at positive 10 Hz and one at negative 10 Hz. DFTs of real signals generally have matched
positive and negative pairs with two notable exceptions. One exception is a DC signal, such as what
you saw in Case 1. Note that the bars here in Case 2 are half the height of the single bar from Case 1 -
think of Case 1 as having bars at positive0) Hz and negative 0 Hz which therefore happen to be on top
of each other at 0 Hz.

(3) The other exception to having matched pairs of bars involves signals at a frequency just on the edge
of how fast a particular sampling rate can pick things up. For a sampling rate of 100 Hz, the fastest
frequency that can be uniquely identified happens to be 50 Hz. Note that there is a single bar of height
200 at a frequency of -50 Hz. This is an instance where phase would matter - if we were plotting sin
instead of cos, one bar would be positive and one would be negative, meaning their overlap would cancel
out and you would get no signal, just as in AliasDemo when the 10 Hz signal was sampled at 20 Hz.

(4) Case 4 shows what happens when you try to sample a signal going faster than half the sampling rate.
In this case, the signal “looks like” a signal going at a slower rate. Given a sampling rate of 100 Hz,
a signal at 90 Hz is 40 Hz faster than the fastest signal that can be truly captured by that particular
sampling rate. It ends up looking like a signal going 40 Hz away from the 50 Hz maximum, or 10 Hz.

Copyright 2009, Gustafson et al.
DAQ 4 – 5

EGR53L - Fall 2009

As mentioned earlier, as a signal’s frequency increases, its energy would simply bounces back and forth
between 0 and 50 Hz (for a sampling rate of 100 Hz).

This case also demonstrates what happened in the previous DAQ lab when sound was sampled at
progressively lower rates. Higher frequency sounds started sounding like lower frequency sounds because
they were aliased. Furthermore, because aliasing reverses the order of some frequencies, the sound was
garbled. Beyond even that problem, sound is not a linearly perceived stimulus, so at very low sampling
rates the sound came out as bass-only, utterly mis-tuned garbage.

To get rid of aliasing, you would need to sample this signal at 180 Hz or faster. Case 4a demonstrates
that, sampled at 200 Hz instead of 100 Hz, the signal looks like a proper 90 Hz signal and its energy is
properly located at 90 Hz.

The next cases examine what happens when multiple frequencies are present in a single signal. These
more closely represent what is happening to music, since music is truly a combination of a several
frequencies.

(5) Case 5 shows two frequencies - 10 Hz and 50 Hz - at two different amplitudes - 1 and 2 respectively.
Notice that they do not interfere with each other (the bar heights are what we would expect for the
individual components). As long as frequencies are not the same (or aliased to look the same), the
energies of those frequencies do not interfere with other frequencies.

(6) Case 6 again shows two frequencies - this time 10 Hz and 80 Hz. Even though the 80 Hz signal is aliased
to look like 20 Hz, its energy does not interfere with the 10 Hz signal and vice versa. Looking at the
time signal, you can count 20 periods, each having a wobble that seems to be going twice as fast within
it.

(7) Case 7 shows two frequencies - 10 Hz and 90 Hz. In this case, the signals do interfere because at a
sampling rate of 100 Hz, 90 Hz “looks like” 10 Hz. If you were to run this case with a sampling rate of
200 Hz, the frequencies would be captured independently. Go ahead and run case 7a at that sampling
rate to see how different the time signal appears without aliasing.

(8) Case 8 shows three frequencies - 10 Hz, 30 Hz, and 40 Hz - which can all be captured uniquely by a 100
Hz sampling rate. What sampling rates would cause the 10 Hz and 30 Hz signals to overlap? Run the
function with that rate.

(9) Case 9 again shows three frequencies - 10 Hz, 30 Hz, and 80 Hz. Even though the 80 Hz is now aliased,
because it is aliased to 20 Hz it does not interfere with the energies of the other two frequencies.

(10) Case 10 shows three frequencies - 10 Hz, 30 Hz, and 90 Hz - where the aliased signal does interfere.

Note in all these cases that we did not examine what happens when cosines and sines come together. The
issue of phase is very important, especially in fields like acoustics. If the freq1.m program had been using
sines instead of cosines, for example, the interference would have been destructive rather than constructive.
For this lab, however, it is with the location of the energy itself rather than the phase that we will be
concerned.

Copyright 2009, Gustafson et al.
DAQ 4 – 6

EGR53L - Fall 2009

4.9 Audio Demonstration

In order to properly capture the frequency information you have to sample at at least twice the rate of the
highest frequency you want to capture. This fact can be used to explain why CDs sample slightly above
44,000 times per second - human hearing generally only goes up to about 20 kHz, so 44.1 kHz captures
everything we can hear (and up to 22.05 kHz) without wasting storage. For example, the sounds with
the 200 kHz sampling rates probably did not sound different from the ones sampled at 44.1 kHz. Aliasing
also explains why the sounds you sampled last week at rates lower than 44.1 kHz sounded wrong - you
were aliasing high frequency information into lower frequencies which made the sounds seem muffled and
confused. Sampling at too low a rate does not eliminate the energy in those higher frequencies - it moves
the energy to different frequencies.

To hear this problem, we are going to use the freq2.m program, which is basically the same as the
freq1.m program, only it adds the capability to play x as a sound. The cases in the table below will be
played in lab. Note that the frequencies are increased by a factor of 20. The freq1 program is good for
looking at the signal and seeing the changes in it, but those frequencies are too low to hear well. On the
other hand, audio signals oscillate too fast to see what is going on for any appreciable duration, so this set
of code is mainly for aural observation.

Case Code x(t)

1m freq2(2000, 1, 0) 1

2m freq2(2000, 1, 200) cos(400 ∗ π ∗ t)

3m freq2(2000, 1, 1000) cos(2000 ∗ π ∗ t)

4m freq2(2000, 1, 1800) cos(3600 ∗ π ∗ t)

4ma freq2(4000, 1, 1800) cos(3600 ∗ π ∗ t)

5m freq2(2000, 1, 200, 2, 1000) cos(400 ∗ π ∗ t) + 2 cos(2000 ∗ π ∗ t)

6m freq2(2000, 1, 200, 2, 1600) cos(400 ∗ π ∗ t) + 2 cos(3200 ∗ π ∗ t)

7m freq2(2000, 1, 200, 2, 1800) cos(400 ∗ π ∗ t) + 2 cos(3600 ∗ π ∗ t)

7ma freq2(4000, 1, 200, 2, 1800) cos(400 ∗ π ∗ t) + 2 cos(3600 ∗ π ∗ t)

8m freq2(2000, 1, 200, 2, 600, 4, 800) cos(400 ∗ π ∗ t) + 2 cos(1200 ∗ π ∗ t) + 4 cos(1600 ∗ π ∗ t)

9m freq2(2000, 1, 200, 2, 600, 4, 1600) cos(400 ∗ π ∗ t) + 2 cos(1200 ∗ π ∗ t) + 4 cos(3200 ∗ π ∗ t)

10m freq2(2000, 1, 200, 2, 600, 4, 1800) cos(400 ∗ π ∗ t) + 2 cos(1200 ∗ π ∗ t) + 4 cos(3600 ∗ π ∗ t)

Copyright 2009, Gustafson et al.
DAQ 4 – 7

EGR53L - Fall 2009

4.10 Sound Equalization

The workstation should already have the audio cabling in place from the previous DAQ lab. Use the net
listing in Table 4.1 on page DAQ 4 – 10 which is a highly simplified version of the circuit from the previous
lab. Level the input using the softscope oscilloscope emulator, only set your volume such that the voltage
peaks at ±250 mV instead of ±400 mV. The reason for this is that later in the lab you are going to be
amplifying the signal by up to a factor of 4. MATLAB’s sound program takes values with values between -1
and 1 only (anything beyond that is chopped to ±1) so the input voltage needs to be limited to ±250 mV.

Once that is done, close the oscilloscope completely and then open the EqualizerDone.m in MAT-
LAB. This particular function simply adds the ability to look at the frequency content of your sounds to
the MirrorInDone.m program used last time. The code at the bottom of this script is almost exactly what
was used in the freq1.m script to see the frequency content of those simpler signals. Examine the file and
confirm that it will acquire 10 seconds of your song at a sampling rate of 50 kHz.

Start your audio device, run the program, save the file as MySound, and then type whos. You should have
500,000 samples to work with. Now let’s say you want to modify the influence that a particular band of
frequencies - for example, the bass - has on the overall sound. Using a graphic equalizer, you generally have
a slider at certain frequencies that you move up and down to change the amplitude of those frequencies.
Using the DFT information, we can do the same thing. To eliminate all sounds below 880 Hz, for example,
we can take the DFT, use logical masks to manipulate the amplitudes of certain frequencies, then take the
inverse DFT (given by the ifft command) and play the result. To make things a bit easier, we will also
use the fftshift function which moves DC to the center of the frequency spectrum. Furthermore, we will
use the real command on the resulting sound since the fft and ifft functions generally produce small
round-off errors that allow complex parts to creep into the final signal that should not be there (and that
the sound command doesn’t know how to handle.

Open the MaskMusic.m code and run it with mask 0.1 while choosing to hear the original sound. The
command for this in MATLAB is:

MaskMusic(0.1, 1)

Use the MySound file that you just created when asked. Having done that, you can hear that the bass is
reduced and the sound is “hollow” somehow. To hear the part that was eliminated all by itself, run the code
using mask 0.2:

MaskMusic(0.2, 1)

This time, only signal components below 880 Hz are sent to the speakers. You can probably recognize the
sound, but it is a bit like listening to it through a wall. Because you sampled at a high enough frequency,
there is no aliasing - just a complete loss of the higher frequencies that provide a crispness to the sound.

To prove that this really is doing what we claim, re-run those two masks on the MyChirp sound file.
You will note that only certain sections of the chirp are audible (with the exception of some tones produces
primarily through roundoff).

To hear a single octave, you can create a mask that only allows a band of frequencies through. Run the
code using mask 0.3 to hear the octave starting at middle A and ending one octave above middle A. Finally,
you may want to hear a very narrow range of frequencies - for example, those between middle A and middle
C. Run the code using mask 0.4 to hear those sounds.

Next, you will calculate some other masks and play your sound after having applied them. You should
put these in the if tree in the MaskMusic function. You will be showing your completed functions as well as
the figures to your lab TA. You should also be discussing how each mask changes the sound - be sure to take
notes while running them so you can describe them to the TA if asked. Each member of the team should
listen to the filtered sound each time. You will likely choose to not listen to the original recording after the
first few masks - simply put in a 0 for the second argument of the function to keep it from repeating the
original sound.

Copyright 2009, Gustafson et al.
DAQ 4 – 8

EGR53L - Fall 2009

4.11 Your Turn

Pick Mask Description

1 Hear only sounds below 440 Hz

2 Hear only sounds above 1760 Hz

3 Hear only sounds between 440 Hz and 1760 Hz

4 Hear only sounds either below 440 Hz or above 1760 Hz

5 Hear only sounds below 4000 Hz (telephone quality)

6 Hear only sounds below 5000 Hz (AM quality)

7 Hear only sounds above 4000 Hz (sounds missing from telephone)

8 Hear only sounds above 5000 Hz (sounds missing from AM)

Note that case 6 will sound different from sampling the signal at 10 kHz. This is because, for this
program, you have sampled at a high enough frequency that none of the information is aliased, then you
have applied a filter to cut out the frequency information beyond 5 kHz. This is what a radio station must
due before sending the audio signals. If they were to simply sample the audio at 10 kHz, they would get
aliasing and most likely a lower-quality sound.

While the above only pass through particular frequency bands, you could also choose to accentuate certain
sounds while still playing the rest of the frequencies at their original magnitudes. This more closely resembles
what happens with a graphic equalizer - you do not completely eliminate a range of frequencies but rather
accentuate the ones you like. For example, run the function using mask 0.5 to accentuate sounds between
two and one octaves below middle A. Notice how the mask is built - it starts off with a 1 since you want
every frequency to come through, then 3 more is added for a particular range of frequencies (in this case,
frequencies between 110 and 220 Hz). In other words, you hear everything, but you have quadrupled sounds
between 110 and 220 Hz (the original one plus three more). Now you should create the following masks as
well. Note they can be easily built by looking at your first four masks as well as mask 0.5.

Pick Mask Description

9 Hear everything, but quadruple sounds below 440 Hz

10 Hear everything, but quadruple sounds above 1760 Hz

11 Hear everything, but quadruple sounds between 440 Hz and 1760 Hz

12 Hear everything, but quadruple sounds either below 440 Hz or above 1760 Hz

13 Your first choice:

14 Your second choice:

These masks should have an amplitude of 1 except in the specified frequencies, where the amplitude should
be 4. For this lab, you will also need to come up with your own masks and mask descriptions. Put these in
Picks 13 and 14. You should think about what you want to do with ranges of frequencies. Note that your
masks should never have a magnitude above 4 since the maximum voltage of your signal is 250 mV and the
maximum value used by the sound function is 1.

4.12 Checkout and Clean-Up

This lab is to be completed before the end of the laboratory period. You will need to get checked off for
the required masks as well as the two you choose to create. You can have the TA check off several masks
at once by running your program and selecting the masks you want credit for. Before leaving the lab,
please carefully disconnect both wires from the CB-68LP, take the wires and return them to the front, then
disconnect your headphones but leave the rest of the audio wiring intact. On the computer, remove all files
from the MATLAB directory, but only after your lab group is sure that you have been checked off for the
masks. Once you have finished all this, you can have a TA come over, verify that the MATLAB directory is
clear and that your circuit has been taken apart, and collect your worksheet.

Copyright 2009, Gustafson et al.
DAQ 4 – 9

EGR53L - Fall 2009

4.13 Overall Network Listing

Item First Second Note

AudioRedClip Splitter RED1 Clip red lead to red wire

RED1 AudioRedClip Line 33 ACH1

AudioBlackClip Splitter BLK1 Clip black lead to black wire

BLK1 AudioBlackClip Line 66 ACH9

Table 4.1: Highly Simplified Network Listing for Synchronous I/O

Copyright 2009, Gustafson et al.
DAQ 4 – 10

EGR53L - Fall 2009

4.14 Scripts

4.14.1 AliasDemo.m Code

1 % AliasDemo.m

2 % Written by Michael R. Gustafson II (mrg@duke.edu)

3 % Visual demonstration of aliasing

4

5 SR1 = 500; SR2 = 100; SR3 = 20; SR4 = 15;

6 SR5 = 11; SR6 = 7; SR7 = 2;

7

8 t1 = linspace(0, 1, SR1+1); t2 = linspace(0, 1, SR2+1); t3 = linspace(0, 1, SR3+1);

9 t4 = linspace(0, 1, SR4+1); t5 = linspace(0, 1, SR5+1); t6 = linspace(0, 1, SR6+1);

10 t7 = linspace(0, 1, SR7+1);

11

12 f = @(t) sin(10*2*pi*t);

13

14 figure(1);

15 subplot(6,2,1)

16 plot(t1, f(t1), ’k-’, t2, f(t2), ’ro’)

17 subplot(6,2,2)

18 plot(t2, f(t2), ’ro-’, t1, f(t1), ’b--’)

19 title(’fs=100 Hz’);

20

21 subplot(6,2,3)

22 plot(t1, f(t1), ’k-’, t3, f(t3), ’ro’)

23 subplot(6,2,4)

24 plot(t3, f(t3), ’ro-’, t1, f(t1), ’b--’)

25 title(’fs=20 Hz’);

26

27 subplot(6,2,5)

28 plot(t1, f(t1), ’k-’, t4, f(t4), ’ro’)

29 subplot(6,2,6)

30 plot(t4, f(t4), ’ro-’, t1, f(-t1/2), ’b--’)

31 title(’fs=15 Hz’);

32

33 subplot(6,2,7)

34 plot(t1, f(t1), ’k-’, t5, f(t5), ’ro’)

35 subplot(6,2,8)

36 plot(t5, f(t5), ’ro-’, t1, f(-t1/10), ’b--’)

37 title(’fs=11 Hz’);

38

39 subplot(6,2,9)

40 plot(t1, f(t1), ’k-’, t6, f(t6), ’ro’)

41 subplot(6,2,10)

42 plot(t6, f(t6), ’ro-’, t1, f(t1*3/10), ’b--’)

43 title(’fs=7 Hz’);

44

45 subplot(6,2,11)

46 plot(t1, f(t1), ’k-’, t7, f(t7), ’ro’)

47 subplot(6,2,12)

48 plot(t7, f(t7), ’ro-’, t1, f(t1*0/10), ’b--’)

49 title(’fs=2 Hz’);

Copyright 2009, Gustafson et al.
DAQ 4 – 11

EGR53L - Fall 2009

4.14.2 freq1.m Code

1 function freq1(fs, a, fa, b, fb, c, fc)

2 % freq1.m

3 % Written by Michael R. Gustafson II (mrg@duke.edu)

4 % Visual demonstration of aliasing

5 % fs: sampling rate

6 % a, fa: amplitude and frequency of first cosine

7 % b, fb: amplitude and frequency of second cosine (optional)

8 % c, fc: amplitude and frequency of third cosine (optional)

9

10

11 %% Set up time and frequency bases

12 tmax=2;

13 N=fs*tmax;

14 t=linspace(0,tmax-1/fs, N)’;

15 f=linspace(0, (N-1)*fs/N, N)’;

16 f=f-f(fftshift(f)==0);

17

18 %% Open or make figure 1 active

19 figure(1)

20

21 %% Validate the number of inputs - must be 3, 5, or 7

22 if nargin<3

23 error(’Must have at least three arguments\n’)

24 elseif mod(nargin,2)==0

25 fprintf(’Must have complete amplitude and frequency pairs\n’);

26 end

27

28 %% Build the signal based on the number of arguments

29 x = a*cos(2*pi*fa*t);

30 if nargin>3

31 x = x + b*cos(2*pi*fb*t);

32 end

33

34 if nargin>5

35 x = x + c*cos(2*pi*fc*t);

36 end

37

38 %% Calculate the FFT and plot both the signal and

39 %% its frequency information

40 X=fft(x);

41 subplot(2,1,1)

42 plot(t,x)

43 xlabel(’t, sec’)

44 ylabel(’x(t)’)

45 title(’Time Representation’);

46 subplot(2,1,2)

47 X=fft(x);

48 bar(f,fftshift(abs(X)));

49 xlabel(’f, Hz’)

50 ylabel(’|X(f)|’)

51 title(’Frequency Representation’);

Copyright 2009, Gustafson et al.
DAQ 4 – 12

EGR53L - Fall 2009

4.14.3 freq2.m Code

1 function freq2(fs, a, fa, b, fb, c, fc)

2 % freq2.m

3 % Written by Michael R. Gustafson II (mrg@duke.edu)

4 % Visual demonstration of aliasing

5 % fs: sampling rate

6 % a, fa: amplitude and frequency of first cosine

7 % b, fb: amplitude and frequency of second cosine (optional)

8 % c, fc: amplitude and frequency of third cosine (optional)

9 % Will also play signal

10 % NOTE - sounds are always rescaled for maximum volume

11 % freq2(2000, 1, 400, -1, 1600) for example

12

13 %% Set up time and frequency bases

14 tmax=2;

15 N=fs*tmax;

16 t=linspace(0,tmax-1/fs, N)’;

17 f=linspace(0, (N-1)*fs/N, N)’;

18 f=f-f(fftshift(f)==0);

19

20 %% Open or make figure 1 active

21 figure(1)

22

23 %% Validate the number of inputs - must be 3, 5, or 7

24 if nargin<3

25 error(’Must have at least three arguments\n’)

26 elseif mod(nargin,2)==0

27 fprintf(’Must have complete amplitude and frequency pairs\n’);

28 end

29

30 %% Build the signal based on the number of arguments

31 x = a*cos(2*pi*fa*t);

32 if nargin>3

33 x = x + b*cos(2*pi*fb*t);

34 end

35

36 if nargin>5

37 x = x + c*cos(2*pi*fc*t);

38 end

39

40 %% Calculate the FFT and plot both the signal and

41 %% its frequency information

42 X=fft(x);

43 subplot(2,1,1)

44 plot(t,x)

45 xlabel(’t, sec’); ylabel(’x(t)’); title(’Time Representation’);

46 subplot(2,1,2)

47 X=fft(x);

48 bar(f,fftshift(abs(X)));

49 xlabel(’f, Hz’); ylabel(’|X(f)|’); title(’Frequency Representation’);

50

51 pause

52 sound(x./max(abs(x)), fs)

Copyright 2009, Gustafson et al.
DAQ 4 – 13

EGR53L - Fall 2009

4.14.4 EqualizerDone.m Code

1 %% Initialize variables and objects

2 clear; format short e; figure(1); clf;

3 delete(daqfind);

4

5 %% Prepare Input

6 % Create handle to input

7 AI=analoginput(’nidaq’,1);

8

9 % Add channel 1 to input

10 addchannel(AI, 1);

11

12 %% Prepare DAQ Card

13 % set variables for sample rate and duration

14 samplerate=50000;

15 duration=10;

16

17 % calculate number of samples

18 samples=duration*samplerate;

19

20 % set sample rate, trigger type, and samples per trigger

21 set(AI, ’SampleRate’, samplerate);

22 set(AI, ’TriggerType’, ’Manual’);

23 set(AI, ’SamplesPerTrigger’, samples);

24

25 % set input, sensor, and units range

26 set(AI.Channel(1), ’InputRange’, [-0.5, 0.5]);

27 set(AI.Channel(1), ’SensorRange’, [-0.5, 0.5]);

28 set(AI.Channel(1), ’UnitsRange’, [-0.5, 0.5]);

29

30 %% Use DAQ Card

31 % examine AI, start AI, and trigger AI

32 AI

33 start(AI);

34 fprintf(’Press return to take data\n’);

35 pause

36 trigger(AI);

37 fprintf(’Taking data...\n’)

38

39 % take data from AI

40 [data time] = getdata(AI);

41

42 %% Plot and Play Data

43 plot(time, data)

44 fprintf(’Press return to play sound\n’);

45 pause

46 sound(data, samplerate)

47 fprintf(’Playing sound...\n’);

48

49 %% Save Data

50 FileName = input(’Enter filename for sound data: ’, ’s’);

51 FileSave = sprintf(’save %s data time samplerate’, FileName);

52 eval(FileSave)

Copyright 2009, Gustafson et al.
DAQ 4 – 14

EGR53L - Fall 2009

53

54 %% Calculate and plot frequency information

55 tmax = duration;

56 fs = samplerate;

57 N = fs*tmax;

58 t = linspace(0, tmax-1/fs, N)’;

59 f = linspace(0, (N-1)*fs/N, N)’;

60 f = f - f(fftshift(f)==0);

61

62 figure(1)

63

64 Incr = floor(samplerate/5000);

65

66 x=data;

67 X = fft(x);

68 subplot(2,1,1)

69 plot(t(1:Incr:end),x(1:Incr:end))

70 subplot(2,1,2)

71 X = fft(x);

72 bar(f(1:Incr:end), fftshift(abs(X(1:Incr:end))));

Copyright 2009, Gustafson et al.
DAQ 4 – 15

EGR53L - Fall 2009

4.14.5 MaskMusic.m Code

1 %% MaskMusic.m

2 %% Written by Michael R. Gustafson II (mrg)

3 %% Masks for Picks 1-10 written by:

4 %%%

5 %%%

6

7 function Mask(Pick, PlayOriginal)

8 %% Default case is not to play original

9 if nargin==1, PlayOriginal=0; end

10

11 %% Load data

12 FileName = input(’Enter filename for sound data: ’, ’s’);

13 FileLoad = sprintf(’load %s’, FileName);

14 eval(FileLoad)

15

16 %% Set up time and frequency bases depending on original song

17 fs = samplerate;

18 N = length(time)

19 f = linspace(0, (N-1)*fs/N, N)’;

20 f = f - f(fftshift(f)==0);

21

22 %% Take DFT of song

23 x=data;

24 X = fft(x);

25

26 %% Determine mask to use

27 if Pick==0.1

28 Mask = (abs(f)>=880);

29 elseif Pick==0.2

30 Mask = (abs(f)<=880);

31 elseif Pick==0.3

32 Mask = (abs(f)>=440) & (abs(f)<=880);

33 elseif Pick==0.4

34 Mask = (abs(f)>=440) & (abs(f)<=440*2^(3/12));

35 elseif Pick==0.5

36 Mask = 1 + 3*((abs(f)>=110) & (abs(f)<=220));

37 elseif Pick==1

38 elseif Pick==2

39 elseif Pick==3

40 elseif Pick==4

41 elseif Pick==5

42 elseif Pick==6

43 elseif Pick==7

44 elseif Pick==8

45 elseif Pick==9

46 elseif Pick==10

47 elseif Pick==11

48 elseif Pick==12

49 elseif Pick==13

50 elseif Pick==14

51 end

52

Copyright 2009, Gustafson et al.
DAQ 4 – 16

EGR53L - Fall 2009

53 %% Use mask to remove corresponding components in X

54 %% and create a shifted FFT called Y

55 Yshift = fftshift(X).*Mask;

56

57 %% Shift Y back, then convert it to time space

58 Y = fftshift(Yshift);

59 y = real(ifft(Y));

60

61 %% Plot the original signal and its DFT,

62 %% the filtered signal and its DFT, and the mask

63 Incr = floor(samplerate/500);

64

65 figure(1)

66 subplot(3,2,1)

67 plot(time(1:Incr:end), real(x(1:Incr:end)));

68 axis([0 max(time) -1 1])

69 title(’Original Sound’)

70 xlabel(’t, sec’); ylabel(’x(t)’)

71 subplot(3,2,3);

72 bar(f(1:Incr:end), fftshift(abs(X(1:Incr:end))));

73 title(’DFT of Original Sound’)

74 xlabel(’f, Hz’); ylabel(’|X(f)|’)

75

76 subplot(3, 2, 2)

77 plot(time(1:Incr:end), real(y(1:Incr:end)))

78 axis([0 max(time) -1 1])

79 title(sprintf(’Sound After Mask %0.0f’, Pick))

80 xlabel(’t, sec’)

81 ylabel(’x(t)’)

82 subplot(3, 2, 4)

83 bar(f(1:Incr:end), fftshift(abs(Y(1:Incr:end))));

84 title(sprintf(’DFT of Sound After Mask %0.0f’, Pick))

85 xlabel(’f, Hz’); ylabel(’|X(f)|’)

86

87 subplot(3, 1, 3);

88 bar(f(1:Incr:end), Mask(1:Incr:end));

89 title(sprintf(’Mask %0.0f’, Pick))

90 xlabel(’f, Hz’); ylabel(’|M(f)|’)

91

92 %% Play the original sound after hitting return

93 %% only if requested

94 if PlayOriginal

95 fprintf(’Hit return to play original.\n’);

96 pause;

97 sound(x, fs)

98 end

99

100 %% Play new sound after hitting return

101 fprintf(’Hit return to play filtered sound.\n’);

102 pause;

103 sound(real(y), fs)

Copyright 2009, Gustafson et al.
DAQ 4 – 17

