
EGR 53L - Fall 2009

DAQ 3:
Introduction to Data Acquisition -
Synchronous I/O

3.1 Introduction

In the DAQ laboratories so far, use have used MATLAB to set and read both digital voltages and analog
voltages. In the first DAQ labs, exact timing has not been an issue - none of the values were affected by the
rate at which data was taken. For this lab, you will be examining audio, and in this case it is critical that
the samples be taken and replayed at a specific rate. The focus, therefore, will be on obtaining and setting
data by establishing a sampling rate and then using the card to either measure or deliver voltages at that
rate. By the end of the lab, you will have a program that reads a five-second sound clip at the sample rate
of your choosing as well as a program that will both play the clip and blink lights in time with the music.

3.2 Resources

The additional resources required for this assignment include:

• Books: None

• Pratt Pundit Pages: MATLAB:CB-68LP Pinout,
http://pundit.pratt.duke.edu/wiki/EGR 53/DAQ Audio 1

• Lab Manual Appendices: None

3.3 Getting Started

1. Each lab group should have one person sit at the PC that has the patch of tape (blue, green, or red)
on it. This is not the same as the strip with the computer’s name on it - it will literally be a small
patch of tape all by itself.

2. Set the machine to “Log on to” ...(this computer) and use the “User name” mrglocal and the
“Password” p1p2dell (that is p-ONE-p-TWO-d-e-l-l). The other lab partner can log into the other
computer either using the mrglocal account or any other valid NET ID (as log as the “Log on to” is
set to Kerberos). You do not need to run X-Win or PuTTY at all on either computer.

3. Start MATLAB on the PC with the tape on it. The first time MATLAB is run, it may take some time
to start up.

4. Once MATLAB starts, make sure the Current Directory listed at the top of the MATLAB window
is

C:\Documents and Settings\labuser\My Documents\MATLAB

5. In the Current Directory window on the left, select and delete any files in the MATLAB directory.

Copyright 2009, Gustafson et al.
DAQ 3 – 1



EGR53L - Fall 2009

3.4 Equipment

The DAQ lab this week requires several different pieces of equipment, most of which have been used in prior
DAQs. The latter includes:

• DAQ (Data Acquisition) Board

• Breadboard

• LEDs - you can choose any two of the LEDs in your parts box.

• Resistors - this week you will use one 470 Ω or 680 Ω resistor to limit the current to the LEDs from
the output channel of the DAQ (we will use DAC1OUT).

• Wires - you will need three red wires, two black wires, and two green wires.

The pieces of equipment that are new this week are:

• Signal Generator: This device creates an electrical signal with frequencies in the range of human
hearing. When the signal from the generator is applied to a speaker, you can hear it if the frequency
is within the range of human hearing and the power of the signal is high enough to drive the speaker
to create a strong enough pressure disturbance. For this lab, the signal generator will be an audio
device (such as an iPod or CD player), so the signals generated should be audible if transmitted with
sufficient power. If you have a CD or a memory stick with music on it, you can play that information
through the other PC on the desk (aka “The one without the tape”). If this is the case, be sure to let
a TA know so that the system can be wired accordingly.

• Headphones: Just everyday headphones. You will use these to convert the electrical impulses from
the signal generator or from MATLAB into an signal that you can hear. For this lab, you will be using
the two headphone jacks on the left side of the speaker bar attached under the monitor.

The audio path for this lab is as follows:

• The signal generator (iPod, CD player, PC, etc) will be connected to an extension cable that has a
1/8” stereo plug on either end.

• The other end of the stereo plug is connected to the “line in” jack of the computer running the DAQ.
If your PC is asking you what to do about the audio plug in the back of the computer, pick “line in.”

• At the front of this computer, there is an audio splitter that takes the voltage from the sound card and
sends it to two outputs. These are split as follows:

– One port of the splitter is connected to the speaker bar. This is so you can hear the sound
generated by either your audio source or the PC with MATLAB through these speakers or through
headphones connected to these speakers. If you have three people in your group, let a TA know
so the signal can be further split.

– The other port of the splitter is connected to a cable that has a 1/8” plug on one end (connected
to the audio splitter) and red and black alligator clips on the other end. These clips will make it
easier to measure voltages with the DAQ since they can clip onto the ends of regular wires, which
can in turn be connected to the breadboard.

Copyright 2009, Gustafson et al.
DAQ 3 – 2



EGR53L - Fall 2009

3.5 Scripts

For this week, the scripts you need have already been written. You will be making minor modifications to
them in order to understand how the DAQ board functions. The files are at:

http://www.duke.edu/~mrg/DAQS/DAQaudio1/

and are called MirrorInDone.m and MirrorOutDone.m. Open a web browser (IE), type in the URL above,
and then right click on the file you want. Choose Save Target As... go the the Desktop, then into the

C:\ Documents and Settings\mrglocal\My Documents\MATLAB

directory and save the file there. Do this for all the files. Copies of these files are at the end of this handout
so you can take notes regarding how they work.

3.6 Analog Input: Teaching The Computer To Listen

For this section, you will be using MATLAB’s Data Acquisition software in concert (hah) with the National
Instruments DAQ card to record electrical voltages created by some audio source. You will be capturing
your own music, so be sure that it is something you would be willing to let your lab partner know that you
own. Also, make sure you know who wrote the song, what album it is on, and what its total length is.

3.6.1 Connecting the Signal Generator

Connect the headphones to the two ports on the left side of the speaker bar, then turn the speaker bar on to
its lowest setting. Plug the free end of the extension cable from the back of the PC running MATLAB into
your audio source. If you are using a CD or a piece of music stored on a memory stick, and thus playing the
music on the other computer, plug the cable into the headphone jack of that other computer.

Next, check the volume settings on the computer running MATLAB. Instructions for the different kinds
of computers are available on the Pundit page for this lab.

Once that is set, assemble the connections given in Table 3.2 on page DAQ 3 – 11. Once done with that,
if you play your music, you should hear it through your headphones. You can adjust the volume two places
- the audio device itself and the knob on the right of the speaker bar. Set the audio so that you can hear
the music, but it is not blaring. You should probably turn the audio device to just about full volume, then
adjust the knob on the speaker bar.

3.6.2 Leveling the Input

In order to check your circuit and to make sure you are not producing voltages beyond what MATLAB
is capable of handling, you are going to use the data acquisition toolbox’s built in oscilloscope, called
softscope, to view your signal. This way, you can set the volume level on your audio device to obtain a
reasonable signal before actually running software to capture the voltages.

Double check your circuit connections, then type softscope in the MATLAB command window to bring
up the built-in oscilloscope program. Note that if there are some initialization errors, you are most likely
still running this correctly. Some computers have hardware that causes these false problems to show up.
Others will start the oscilloscope without any problems. Just click right through the errors that MATLAB
gives you (generally four of them, if any) and you will eventually get to the Hardware Configuration page.

Hardware Configuration

First, make sure that the scope is measuring signals from the nidaq adapter with ID 1. Set the sample rate
to 1000 Hz meaning the card will measure 1000 voltages per second on each open channel. Next, set the card
to Differential mode, which means the card will be measuring voltage differences between two channels
rather than absolute voltages as measured from ground. This halves the number of voltages to be measured
but is generally safer than trying to find common ground.

Channel Selection and Settings

Unselect All channels, then go back and turn on channels 1 and 2. Even though you are not using channel
2, there is a glitch with the oscilloscope settings that can only be overcome if there are two or more channels
being measured.

Copyright 2009, Gustafson et al.
DAQ 3 – 3



EGR53L - Fall 2009

We will want to measure voltages that are between -0.4 V and 0.4 V, so the most precise range for
measurement is [-0.5 0.5]. Go ahead and change the range for channel 1. Note that setting the range too
high would result in a less precise measurement, while setting the range too low would result in “clipping.”
When clipped, voltages outside the range are recorded as equal to the maximum value within the range. In
this case, any voltages with magnitudes greater than 0.5 V will show up as voltages with magnitudes of 0.5
V. Once the settings are in, accept them by hitting the OK button.

Oscilloscope Settings

Now that the oscilloscope screen is open, maximize the window so the oscilloscope fills up the entire screen.
Next, click the Trigger button and start playing a song. You should pick a section of a song that has both
music and vocals - you will end up recording a 5 second clip a few times, so make sure the music and vocals
last between 10 and 15 seconds. You should also make sure to note which part of the song you are using to
calibrate the system so that you use the same segment or close to it each time.

Right-click in the middle of the scope screen and select Autoscale. You should now see a wave on the
screen - if not, turn the volume up on your device or CD player software and reduce the volume on the
speakers as necessary. Select Autoscale again. If the maximum output from your device does not produce
a signal, ask a TA or instructor of help.

To help set the volume level of your audio device properly, you will want to use the horizontal and vertical
scales of the oscilloscope. The vertical scale is given at the lower left of the screen. This measurement is
reporting the voltage difference between the horizontal lines on the oscilloscope. The horizontal scale is given
at the lower right of the screen. This measurement is giving the amount of time between the vertical lines
on the screen. There are two ways to change these scales. The first is to use the virtual knobs to the right
of the screen - you can “grab” one by pointing to the small divot on the knob and using the mouse to “spin”
the dial. Be sure to grab the Scale dial and not the Offset dial. Go ahead and try to set the values such that
there is 0.05 V/div vertically and 100 ms/div horizontally. For the specific monitors and resolutions in the
lab, when the softscope window is maximized there are 30 vertical divisions and 35 horizontal divisions.
This means that the maximum voltages that will show up on the screen are ±0.75 V tall (15 vertical divisions
from 0 V x 0.05 V/div) and the time across the screen is 3.5 sec (35 divisions total x 100 ms/div). Note that
setting these values with the dials can be tedious.

Numerical Scope and Channel Settings

A more precise way to set these values is to use the Edit command at the top left of the screen. The horizontal,
or time, scale is in the Scope... window under the Scope Properties page. Make sure display1 is selected,
then click on the value in the HorizontalScale property and change this to 0.100. Click OK to get out of
this window. Next, go back to the Edit command and pick the Channel... window. Under Channel

Properties, make sure CH1 is selected, then click on the value in the VerticalScale property and change
this to 0.05. Click OK to get out of this window.

Volume Adjustment

Using the volume control on your device or music player software adjust the voltage coming from your device
so that the peaks are just under eight vertical divisions away from the center line. This means that your
audio source is producing voltages between -0.4 V and 0.4 V. While your audio device is likely capable of
producing somewhat larger values, this is a good range so as to not overload your device. Furthermore, as
you saw when starting the oscilloscope, there are different input ranges for the DAQ card. We will be using
the same -0.5 V to 0.5 V range for the entire experiment. Therefore, limiting the output of your device to
±0.4 V will make sure that you do not overload the DAQ card, either.

Overloading the card will result in clipping, which will cause problems with the sound reproduction later.
You can always adjust the speaker volume to make the sound louder or quieter. After the leveling is complete,
do not change the volume level on your device, CD player software, or PC with MATLAB. Any of those
will change the voltage seen by the DAQ card, while the speaker knob on the side of the speaker bar will
only change the volume at the headphones.

Once you are sure your DAQ board is working and have leveled the output from the audio device or CD
software, close the window with the oscilloscope. You have to get rid of the oscilloscope now because
the DAQ system cannot allow two different programs to actively engage the card at a given time.

Copyright 2009, Gustafson et al.
DAQ 3 – 4



EGR53L - Fall 2009

3.6.3 Acquiring the Signal

Now that the oscilloscope is closed, you can open the MirrorInDone.m program you retrieved earlier.
A text copy is included in ¶3.11.2 on page DAQ 3 – 12. The following bullets describe in detail what each
line of the program will do. Make sure to read the descriptions of what each line of code is doing - some are
reminders from previous labs but several are now to this one given that we will either be taking an array of
measurements or preloading the card with an array of voltages to be sent to the output at a particular rate.

• delete(daqfind)

This line will locate any data acquisition objects currently active and remove them. This is a good
line to have at the start of any data acquisition program so that the computer is truly starting from
scratch.

• AI=analoginput(’nidaq’,1)

This creates a handle for the National Instruments Data Acquisition board (or nidaq) called AI. A
handle is merely an identifier that is associated with a certain object. The handle is used in order to
access the properties of the object so that they can be modified or viewed. For example, in writing
formatted text to a file, we use the fid=fopen(FileName, ’w’) command to create a handle fid to
whatever file we want to open. The same concept is at work here.

Whenever we send information to the board, this AI handle is used. You can type get(AI) or set(AI)
to see some of the properties.

• addchannel(AI, 1)

This opens input channel 1 as the first channel from the board. To open multiple channels, simply
replace the 1 above with a vector of the channels you wish to open (i.e. addchannel(AI, [0 6 2]),
which would make channel 0 the first channel, channel 6 the second channel, and channel 2 the third
channel).

• samplerate=44500

This sets the variable samplerate equal to 44500. We will later use this as the number of samples
per second. Note that the input sample rate can go as high as 200000, though the output rate cannot
exceed 1000. The sound card in the system can achieve higher output rates than the DAQ card, and
for this program, we will use the sound card to produce the output. In the next section, where we use
the DAQ card to produce an output in time with the music, we will need to adjust the data and the
sampling rate appropriately.

• duration=5

This sets the variable duration equal to 5. We will later use this as the number of seconds for the
board to collect data.

• samples=duration*samplerate

This sets the variable samples equal to the duration multiplied by the sample rate (which, therefore,
yields 222500 total samples in this case). This variable will later be used as the total number of samples
that will be taken over the entire duration.

• set(AI, ’SampleRate’, samplerate)

This sets the property SampleRate of the object AI (which we have defined as the input from the DAQ
board) to a value equal to the value of the variable samplerate. This is the line that actually tells the
card how fast it should take measurements.

• set(AI, ’TriggerType’,’Manual’)

This sets the property TriggerType of the object AI to Manual, which means MATLAB expects us to
tell it exactly when to start taking data rather than automatically starting to collect data when the
connection to the board is made.

• set(AI, ’SamplesPerTrigger’, samples)

This sets the property SamplesPerTrigger, or the total number of data samples taken each time the
board is triggered, of the object AI to the value of the variable samples.

Copyright 2009, Gustafson et al.
DAQ 3 – 5



EGR53L - Fall 2009

• set(AI.Channel(1), ’InputRange’, [-0.5 0.5])

set(AI.Channel(1), ’SensorRange’, [-0.5 0.5])

set(AI.Channel(1), ’UnitsRange’, [-0.5 0.5])

These lines set the three range properties for the first channel of the AI object (in our case, channel 1)
to go from -0.5 to 0.5 V. The default is to go from -5 to 5 V, which would not take precise measurements
for the particular range of values you will be taking. Because we set the maximum amplitude to 0.4 V
previously, the range of ±0.5 V is as precise as we can get for our sounds.

• AI

start(AI);

fprintf(’Press return to take data\n’);

pause

trigger(AI);

fprintf(’Taking data...\n’)

The AI by itself will show the information about the AI object on the screen, while the start(AI) will
activate the board. After the user hits return, the trigger command tells the board to begin taking
data from the open channels using the previously specified sample rate and number of samples.

• [data, time]=getdata(AI)

The getdata function reads the data as well as the time information from the board. The matrix data

contains all the measured voltages from each open channel, with each column representing the readings
for one channel. For this experiment, there is only one open channel so there will only be one column.

The matrix time represents the corresponding times when each data point was taken. Note that
whenever you take voltage data from the card, you must also take the time data. Even if you do not
use it, you need to tell MATLAB to store it somewhere.

• plot(time, data)

This line simply plots the data you obtained on the screen as a function of time. You can now see the
voltage that the DAQ recorded for your sound. From this plot, you should be able to see where the
sound was loudest and where it was quietest. You cannot, however, determine any sense of the pitch
of the sound - the signal is simply oscillating too fast to get any useful frequency information out of
this plot. For example - for this clip, there are 222500 samples to plot on the screen, and not nearly
that many pixels on the screen to show them individually!

• fprintf(’Press return to play sound\n’);

pause

sound(data/max(abs(data)), samplerate)

fprintf(’Playing sound...\n’);

This code will wait until the user has had a chance to pause playback from the original source. After
the user hits return, MATLAB will play the sound using its own sound command and the sampling
rate specified in the second argument, samplerate. Note that MATLAB’s sound command can handle
values between -1 and 1, so the command above re-scales the data you took to expand it accordingly.

• FileName = input(’Enter filename for sound data: ’, ’s’);

FileSave = sprintf(’save %s data time samplerate’, FileName);

eval(FileSave)

Finally we want to save the matrices data and time to a file, along with the sampling rate. The code
above shows how to get a filename from the user and use the sprintf command to create a string
containing the command you want to run. The eval command then “runs” the string.

Having gone through what the commands do, you can now run the script. After the script starts, hit
play on your audio source and then hit return to start recording. When the program indicates that recording
is over, you should pause playback on your device so that it is no longer sending a signal to the speakers.
That way, you can listen to how the computer “heard” it - this will be played back using the same sampling
rate, but the voltages at the headphones will be determined by MATLAB’s sending electrical signals to the
headphone jack rather than the computer passing through the voltages sent to it via the microphone jack.

Copyright 2009, Gustafson et al.
DAQ 3 – 6



EGR53L - Fall 2009

Discuss the sound quality of the playback versus the original recording with your lab partner and write
down the conclusion of your discussion for inclusion in your lab report. Note that the volume may be different
due to the scaling. Finally, save the data to a file called SoundData44500. MATLAB will actually call the
file SoundData44500.mat since it is saved to MATLAB-native format. MATLAB will save the data, time,
and samplerate variables to this file.

3.7 Data Acquisition and Analysis

The acquisition and analysis portion of this lab is very simple. You will be acquiring your sound clip with
six different sampling rates and giving a quantitative analysis of the sound storage and a qualitative analysis
of the sound reproduction. Be sure that you and your lab partner discuss the difference between the original
sound and the sound you hear sampled at the different rates before moving on to the next sampling rate.
This information will need to appear in your lab report. You should save the files using the same format as
above, SoundDataSR where SR is the sampling rate.

Using the superior output capabilities of the sound card, you can investigate how well the DAQ board
captures sound. Find a particularly interesting clip of music in your song (vocals, background music, etc.)
and use the MirrorInDone script to view and hear the sound for the sample rates in Table 3.1. Also use
the whos command to see how many samples were stored and how much space they took - these two pieces
of information will go in the second and third columns of the table, respectively. The number of samples is
given in the Size column for the data array and the amount of memory is given in the Bytes column for
the data array. Do not report the grand total - that value includes all matrices currently in memory.

Since all clips should be 5 seconds long, you can figure out how much memory will be taken up by the
entire song by first dividing the memory in your data matrix by 5 to get a memory-per-second value, then
multiplying that number by the song length in seconds. For example, if a 5 second clip of a 3:22 song takes
up 1200 bytes, the whole song will take up

Whole Song =
1200 bytes

5 seconds
∗

202 seconds

song

which is 48480 bytes or 47.34 KB per song.
Note that the prefixes “kilo,” “mega,” and “giga,” with respect to memory amounts, may refer not to

integer powers of 1000 but instead to powers of 1024. A kilobyte can thus mean 1024 bytes. This is because
while 1000 is not an even power of 2, 1024 is (210) and is fairly close to 1000. Since memory stores binary
information and that information is generally grouped in integer powers of two, it made sense to use powers
of 2 for the prefixes as well.

There is an ongoing discussion about reverting the SI prefixes to mean exact powers of 10 and replacing
the terms for 210, 220, and 230 with “kibi,” “mebi,” and “gibi” where the “bi” at the end refers to the binary
nature of the prefixes.1 This issue is not as potentially catastrophic as the difference between long and short
scales for numbers2 but, as memory sizes increase, the disparity between the decimal and binary versions
increases. For abbreviations of these prefixes, the letter “i” is inserted after the traditional abbreviation to
indicate the binary version, such that 1 KiB (a kibibyte) would be 1024 bytes and 1 GiB (a gibibyte) would
be 1,073,741,824 bytes (or 2,147,483,648 nibbles - which makes two gibinibbles or 2 Gini†).

Once you know how much space your song will take up, you can determine how many copies of your song
sampled at that particular rate would fit on a 700 MB CD-RW and a 20 GB iPod. For example, given the
song above,

Songs Per CD =
Song

48480 bytes

700 ∗ 10242 bytes

CD
≈ 15140 songs per CD or 14.79 KiSongs‡

Songs Per iPod =
Song

48480 bytes

20 ∗ 10243 bytes

iPod
≈ 442963 songs per iPod or 0.4224 MiSongs‡‡

1http://en.wikipedia.org/wiki/Binary prefix
2http://en.wikipedia.org/wiki/Long and short scales
†Yes. Really.
‡No. Not really.

‡‡IBID. (IBIBID?)

Copyright 2009, Gustafson et al.
DAQ 3 – 7



EGR53L - Fall 2009

3.8 Analog Output: Delivering Signals

Now that you have seen how MATLAB can use the DAQ to measure signals, you will use it to create signals.
The DAQ board we are using has two possible outputs that can change values up to 1000 times per second.
This is fast enough to generate sounds, though the quality is not spectacular. Instead of connecting an
output channel to a speaker, you will hook up DAC1OUT to a combination of two LEDs (facing opposite
directions). This way, you will be able to “see” portions of higher voltage (and thus volume) due to the
brightness of the light.

The script described below, MirrorOutDone.m, will send a scaled version of the data to DAC1OUT on
the DAQ board while simultaneously playing the music using the sound command. The sampling rate and
data set going to the output cards are adjusted such that the two should take the same amount of time;
thus, the music and lights should be in sync. Note in this case that the values sent to the data card will
have been scaled such that the voltages reach ±10 V - this is to make sure that the LEDs will be at their
brightest when the song is at its loudest.

The following bullets go over in detail what each line of the program will do. Make sure to read the
descriptions of what each line of code is doing. Again, some will be a reminder from previous work.

• delete(daqfind)

Again, it is good practice to clear out any DAQ objects before progressing further.

• FileName = input(’Enter filename for sound data: ’, ’s’);

FileLoad = sprintf(’load %s’, FileName);

eval(FileLoad)

These commands load the data, time, and samplerate matrices from the file created in the
MirrorInDone program using the process described on the Pratt Pundit page MATLAB:Flexible

Programming.

• AO=analogoutput(’nidaq’, 1)

This defines a handle AO for the output of the board.

• addchannel(AO, 1)

This adds output channel 1 DAC1OUT as the first (and only) accessible output on the board.

• Ratio = ceil(samplerate/500)

set(AO, ’SampleRate’, samplerate/Ratio);

set(AO, ’TriggerType’, ’Manual’);

These commands are the same as for taking input, though a SamplesPerTrigger command is not
needed because that will simply be the size of the array given to the output. Note that the samplerate
was taken from the data file. The Ratio value will determine how much faster than 500 samples per
second the original data was obtained; the sample rate for the DAQ output is then set to some value
at or slightly below 500. This is to make sure the card accurately produces the voltages - signals going
to the output faster than 500 samples per second can cause problems with these cards.

• VoltageOut = [10*data(1:Ratio:end)/max(abs(data)); 0];

This line produces a data set where only certain samples are used based upon the difference in sampling
rates between the audio output and the DAQ output. For example, if data were obtained at 5000
samples per second, Ratio would be 10 and only every tenth point would be sent to the card. The 0
at the end makes sure that the lights turn off when the clip is over.

The values sent to DAC1OUT are rescaled to go between -10 V and 10 V instead of between -0.4 V and
0.4 V set before. Again, this is so that the signal sent to DAC1OUT will have a high enough voltage to
turn the LEDs on. Note that these voltage are far too high for most headphones.

• putdata(AO, VoltageOut)

This puts the numbers in the second argument in a queue for the output channel of AO - these values
will be sent to the output channel once triggered.

Copyright 2009, Gustafson et al.
DAQ 3 – 8



EGR53L - Fall 2009

• AO

start(AO)

trigger(AO)

This displays the information about AO on the screen, activates the board, and then triggers the board
to start sending data from its output to the DAQ board.

• sound(data/max(abs(data)), samplerate)

This will play the sound. note that once the trigger happens, MATLAB will continue to run - it does
not wait for the card to finish before moving on.

• disp(’Done’)

This displays the text Done in the MATLAB window to indicate that the program has completed.

Now that you have gone through each line of code, run the script and enter SoundData5000 as the file
name. You should see the light blink in time with the beat of the music. After confirming that the sound
is being reproduced correctly, you can hear how mismatched input and output sampling rates can alter the
sound. Simply add a line of code in the MirrorOutDone script just below where the file is loaded that says:

samplerate = 0.5*samplerate;

that changes that value of the samplerate so that instead of the SampleRate property of the output being
the same as when the data was acquired, the voltages are sent to the output half as fast. Re-run the script
with the SoundData5000 file and note what you hear. Change the line so that now it is 2.0*samplerate.
Run the program on SampleRate5000 and again note what you hear. The program will automatically
compensate for the limitation on the sampling rate of the DAQ card.

3.9 Assignment

For this lab, you and your partner will fill out a lab report that has Table 3.1 as well as answers to the
questions on the handout. If you want, you can copy the two programs to your OIT account but that is not
required.

3.10 Clean-Up

Before leaving the lab, please perform the following tasks:

(1) Carefully disconnect all wires and electrical elements from the CB-68LP, the breadboard, and the audio
device. Leave other connections in place.

(2) Put the electrical elements, breadboard, and screwdriver back in the bin.

(3) Have a TA verify the contents of your bin.

(4) Take the wires and bins and return them to the front table.

Copyright 2009, Gustafson et al.
DAQ 3 – 9



EGR53L - Fall 2009

3.11 Sample Laboratory Assignment

Names and Net IDs:

•

•

•

Data Table

Sample Samples Memory Memory Copies Copies
Rate (5-sec Clip) (5-sec Clip) (Whole Song) per CD per iPod

200000

44500

15000

5000

2500

500

Table 3.1: Quantitative Sound Data

Questions

(1) What song did you use? Be sure to include the title, artist, album, and length of the song in your
lab report. The length is especially important to get an idea of how much memory your song will take
relative to the 5-second clip.

(2) What was the maximum voltage the DAQ measured (and softscope displayed) for your clip? Why
was this value used?

(3) How do you and your lab partner think the quality of the sound changed as the sampling rate decreased?
Which rates would you say are at or near “CD” quality? “FM radio” quality? “AM radio” quality?
Write a sentence or two on the quality and overall sound of the output from each rate.

(4) What happened when you tried to send the sound data to the DAQ card at the wrong sampling rate?

(5) Given all the information in the table and the qualities you assigned to different sampling rates, do you
think data files such as those created by MATLAB are how information is stored on a CD? On an iPod?
Defend your answer in each case.

Copyright 2009, Gustafson et al.
DAQ 3 – 10



EGR53L - Fall 2009

3.11.1 Overall Network Listing

Item First Second Note

AudioRedClip Splitter RED1 Clip red lead to red wire

RED1 AudioRedClip Pin B23 Put red wire from clip in B23

AudioBlackClip Splitter BLK1 Clip black lead to black wire

BLK1 AudioBlackClip Pin X1 Put black wire from clip in X1

RED2 Pin A23 Line 33 ACH1

BLK2 Pin X11 Line 66 ACH9

GRN1 Pin X14 Line 32 AIGND

RED3 Pin A6 Line 21 DAC1OUT

GRN2 Pin Y23 Line 55 DGND

RES Pin B6 Pin F6 Resistor

LED1 Pin I6 Pin Y5 Long end in I6

LED2 Pin J6 Pin Y7 Long end in Y7

Table 3.2: Network Listing for Synchronous I/O

Copyright 2009, Gustafson et al.
DAQ 3 – 11



EGR53L - Fall 2009

3.11.2 MirrorInDone.m

1 %% Initialize variables and objects

2 clear; format short e; figure(1); clf;

3 delete(daqfind);

4

5 %% Prepare Input

6 % Create handle to input

7 AI=analoginput(’nidaq’,1);

8

9 % Add channel 1 to input

10 addchannel(AI, 1);

11

12 %% Prepare DAQ Card

13 % set variables for sample rate and duration

14 samplerate=44500;

15 duration=5;

16

17 % calculate number of samples

18 samples=duration*samplerate;

19

20 % set sample rate, trigger type, and samples per trigger

21 set(AI, ’SampleRate’, samplerate);

22 set(AI, ’TriggerType’, ’Manual’);

23 set(AI, ’SamplesPerTrigger’, samples);

24

25 % set input, sensor, and units range

26 set(AI.Channel(1), ’InputRange’, [-0.5, 0.5]);

27 set(AI.Channel(1), ’SensorRange’, [-0.5, 0.5]);

28 set(AI.Channel(1), ’UnitsRange’, [-0.5, 0.5]);

29

30 %% Use DAQ Card

31 % examine AI, start AI, and trigger AI

32 AI

33 start(AI);

34 fprintf(’Press return to take data\n’);

35 pause

36 trigger(AI);

37 fprintf(’Taking data...\n’)

38

39 % take data from AI

40 [data, time] = getdata(AI);

41

42 %% Plot and Play Data

43 plot(time, data)

44 fprintf(’Press return to play sound\n’);

45 pause

46 sound(data/max(abs(data)), samplerate)

47 fprintf(’Playing sound...\n’);

48

49 %% Save Data

50 FileName = input(’Enter filename for sound data: ’, ’s’);

51 FileSave = sprintf(’save %s data time samplerate’, FileName);

52 eval(FileSave)

Copyright 2009, Gustafson et al.
DAQ 3 – 12



EGR53L - Fall 2009

3.11.3 MirrorOutDone.m

1 %% Initialize variables and objects

2 clear; format short e

3 delete(daqfind);

4

5 %% Load Data

6 FileName = input(’Enter filename for sound data: ’, ’s’);

7 FileLoad = sprintf(’load %s’, FileName);

8 eval(FileLoad)

9

10 %% Change sample rate?

11 samplerate = 1.0 * samplerate;

12

13 %% Prepare Output

14 % Create handle to output

15 AO=analogoutput(’nidaq’,1);

16

17 % Add channel 1 to output

18 addchannel(AO, 1);

19

20 %% Prepare DAQ Card

21 % set sample rate and trigger type

22 Ratio = ceil(samplerate/500)

23 set(AO, ’SampleRate’, samplerate/Ratio);

24 set(AO, ’TriggerType’, ’Manual’);

25

26 %% Use DAQ Card

27 % put data to AO; end with 0

28 VoltageOut = [10*data(1:Ratio:end)/max(abs(data)); 0];

29 putdata(AO, VoltageOut);

30

31 % examine AO, start AO, and trigger AO

32 AO

33 start(AO);

34 trigger(AO);

35

36 %% Play Music

37 sound(data/max(abs(data)), samplerate)

38

39 %% Display when done

40 disp(’done’)

Copyright 2009, Gustafson et al.
DAQ 3 – 13


