
EGR 53L - Fall 2009

DAQ 2:
Introduction to Data Acquisition: Analog I/O

2.1 Introduction

Now that you have seen how to use the DAQ cards to set and measure digital (on and off) voltages, we will
look at the card’s ability to set and measure a greater variety of voltages. Though this will be called “analog
input” and “analog output,” it is important to note that the computer still cannot read a true continuum of
values. These cards, in particular, are capable of splitting up a range of voltages into 216 (or 65536) different
“levels,” and the card can read which of those levels is nearest to the actual voltage at the terminals. The
input range can be as small as ±0.05 V or as large as ±10 V, meaning the resolution on the input can be
as small as about 1.5 µV or as “large” as about 300 µV. These cards can also set any of 65536 different
voltages within a range of ±10 V - giving the device a resolution of about 300 µV. For our experiments,
this resolution will be more than adequate; however, some applications require greater refinement, and DAQ
cards are made that are capable of higher resolutions as well as different ranges.

During this lab, you will learn how to use MATLAB and the DAQ cards to set and measure voltages,
including using a loop to produce or read several different voltages over time. Please note that as always
when working with the DAQ cards, your safety is paramount, followed by the safety of the equipment. The
safety notice for all DAQ labs still applies. Please revisit the rules that come into play when doing one of
the DAQ labs in the handout for DAQ 1.

After becoming familiar with analog voltages, you will create a network listing that will allow you to
collect data to determine how an LED’s color, size, and/or shape may determine how the LED works. In
particular, you will be graphically determining when each of the LEDs turns on and comparing those values.

2.2 Resources
The additional resources required for this assignment include:

• Books: None

• Pratt Pundit Pages: MATLAB:CB-68LP Pinout,
http://pundit.pratt.duke.edu/wiki/EGR 53/DAQ 2

• Lab Manual Appendices: None

Note - the second Pundit page listed contains pictures of the circuits under development as well as a couple
graphs MATLAB should show you during the lab. You may therefore want to have Pundit open on the PC
not being used for data acquisition.

Copyright 2009, Gustafson et al.
DAQ 2 – 1



EGR53L - Fall 2009

2.3 Getting Started

1. Each lab group should have one person sit at the PC that has the patch of tape (blue, green, or red)
on it. This is not the same as the strip with the computer’s name on it - it will literally be a small
patch of tape all by itself.

2. Set the machine to “Log on to” ...(this computer) and use the “User name” mrglocal and the
“Password” p1p2dell (that is p-ONE-p-TWO-d-e-l-l). The other lab partner can log into the other
computer either using the mrglocal account or any other valid NET ID (as log as the “Log on to” is
set to Kerberos). You do not need to run X-Win or PuTTY at all on either computer.

3. Start MATLAB on the PC with the tape on it. The first time MATLAB is run, it may take some time
to start up.

4. Once MATLAB starts, make sure the Current Directory listed at the top of the MATLAB window
is

C:\Documents and Settings\labuser\My Documents\MATLAB

5. In the Current Directory window on the left, select and delete any files in the MATLAB directory.

2.4 Equipment
The DAQ lab this week will re-use several of the devices and elements used previously. Specifically, the
DAQ board, breadboard, LEDs, resistors, and wires will again be used. Be sure that you have the following
inventory at your lab station:

• DAQ (Data Acquisition) Board: Again, be sure to use the table of pinouts for the CB-68LP connection
block, which are shown on the Pratt Pundit page MATLAB:CB-68LP Pinout, if you are unsure of where
to make a connection.

• Breadboard

• LEDs: You should have six LEDs - both red and green examples of small, large, and rectangular LEDs.

• Resistors: You will need either two 470 Ω resistors or two 680 Ω resistors. There will most likely be a
total of four of these in the plastic box you took from the front of the room.

• Wires: This week, you will need a total of six red wires, six black wires, and four green wires.

2.5 Basic Analog Output
The DAQ cards used in this lab have two analog output channels, labeled DAC0OUT and DAC1OUT on
MATLAB:CB-68LP Pinout page. MATLAB can control the output voltage of these channels independently,
and each is allowed to have a range from -10 V to +10 V. The voltage is measured relative to the AOGND
(Analog Output GrouND) channel.

There are two fundamentally different ways to use the analog output channels. The first, which will be
covered in a later lab, allows you to give MATLAB a vector of data and timing information for how fast the
values in the vector should be applied to the output channel - with this method you can control the exact
rate at which MATLAB will deliver voltages. This is useful if, for example, you are trying to control a device
or make a sound by connecting a speaker to the output of your card.

The second, which is used in this lab, is to tell MATLAB a voltage value for each channel you have added.
This method is far simpler and can still be used to produce a stream of voltages by using the command in
a loop. The drawback for this method is there is no way to set exactly the speed at which the voltages will
be delivered. This asynchronous method of delivering voltages could be disastrous for applications where
timing is important, such as music.

To see how analog output works, you will wire the two analog output channels such that each powers a
series combination of a resistor and an LED as in the first data acquisition lab. For this part of the lab, you
will need the following in addition to the CB-68LP and the breadboard:

Copyright 2009, Gustafson et al.
DAQ 2 – 2



EGR53L - Fall 2009

• Two LEDs (small green and red)

• Two resistors

• Two red wires and one black wire

Once you have the items above, make the connections in Table 2.1 on page DAQ 2 – 14 to make the
circuit shown in Figure 2.1. Remember that anything called a “Pin” or referred to as the letter A-J, X, or
Y followed by a number indicates a socket on the breadboard – the letter is the row and the number is the
column. Anything called a “Line” or referred to as the letter L followed by a number indicates a gate on the
CB-68LP connection block.

Once you have made sure the circuit is connected correctly, you can begin writing the program to control
the two lights. For this part, the green LED and its resistor are connected to DAC0OUT and will be on the
left while the red LED and its resistor are connected to DAC1OUT on the right. We will now go through the
code required to access the data acquisition card, how to set up the two output channels, and how to set the
voltages of each channel.

Open a new script file that you will save as BasicAOutput.m. First, you will need to write code that sets
up the card and prepares it to act as an output device. The following code will clear the workspace, stop
and clear any connections MATLAB currently has to the DAQ card, and create a variable called AO (the
capital letters ay and oh) that we can use to talk with the card:

1 % Clear out workspace

2 clear

3

4 % Clear out DAQ objects

5 delete(daqfind)

6

7 % Create Analog Output Object

8 AO = analogoutput(’nidaq ’, 1)

If you save and run this code, you will see the following message:

Display Summary of Analog Output (AO) Object Using ’PCI -6014 ’.

Output Parameters: 1000 samples per second on each channel.

Trigger Parameters: 1 ’Immediate ’ trigger on START.

Engine status: Waiting for START.

0 total sec. of data currently queued for START.

0 samples currently queued by PUTDATA.

0 samples sent to output device since START.

AO object contains no channels.

This means MATLAB has connected to the analog output portion of the DAQ card and is awaiting further
instructions. Your next task is to tell MATLAB which of the two analog output channels you would like to
use. For this program, you will be using both (channels 0 and 1), and you can tell MATLAB that by adding
the following code:

10 % Add channels to Analog Output Object

11 addchannel(AO, [0 1])

Now if you run the code, you will get an additional message,

Index: ChannelName: HwChannel: OutputRange: UnitsRange: Units:

1 ’’ 0 [-10 10] [-10 10] ’Volts ’

2 ’’ 1 [-10 10] [-10 10] ’Volts ’

Copyright 2009, Gustafson et al.
DAQ 2 – 3



EGR53L - Fall 2009

that shows you now have access to hardware channels 0 and 1, that the DAQ has configured these outputs to
range from -10 V to 10 V, and that DAC0OUT is the first channel and DAC1OUT is the second (based on
their index). Once a channel is added, MATLAB always refers to it by its index number, not its hardware
channel number. In this case, the “first channel” is DAC0OUT and the “second channel” is DAC1OUT.

Now that you have access to the particular channels, you can send voltages to each using the putsample

command. For example, to test your circuit by turning both of the lights on, then pausing until the user
hits a key, then turning both the lights off, you can add the code (note - the numbering of lines of code is
discontinuous because lines have been skipped which will be added in later):

19 % Write values to output channels

20 putsample(AO , [5 5])

21 pause

22 putsample(AO , [0 0])

and run your program. Make sure that both of your lights come on properly. If not, the most common
mistake is to have put the LED in backwards. Fix any wiring mistakes you may have, and run the code
again. If you cannot find a problem with your wiring, let a TA or the instructor know.

It is important to note that the data in the first entry of the vector is assigned to the first indexed channel.
For example, putting in the vector [5 0] will turn the green LED on since it is connected to the DAC0OUT

hardware channel, which is indexed first. Conversely, putting in [0 5] will turn the red LED on since it is
connected to the DAC1OUT hardware channel, which is indexed second. You can also set the voltages to two
different non-zero values - try [3 5] or various other combinations of non-negative voltages and see what
happens to your lights. When you are done with that, return the vector on line 20 of your code to [5 5] as
a way of testing the lights, and run your code again.

You can also use the putsample method to set the lights to a stream of values by putting the command
in some kind of loop. Add the following code to the bottom of your code, then run your program:

24 % Use loop to set several different voltages

25 for k=1:300

26 % Calculate voltages for each channel

27 Vout0 = 2.5+2.5*sin(2*pi*k/100);

28 Vout1 = 2.5+2.5*cos(2*pi*k/100);

29 % Put voltages to each channel

30 putsample(AO , [Vout0 Vout1 ])

31 % leave line 31 blank for now

32 % leave line 32 blank for now

33 pause (0.02)

34 end

------------------------------------------------

43 % Turn all outputs off

44 putsample(AO , [0 0])

Notice that the lights will become brighter, then go dim, then will be off for a bit, then will repeat that
process a couple of times. This is because the LEDs will remain off for positive voltages below some threshold.
Above that threshold, they will become brighter as more and more current passes through them, up to some
physical tolerance at which point the LED will break. The resistor is in place in this circuit to make sure
the current level never reaches that point. Also, most LEDs can handle some negative voltage but generally,
that should be avoided.

If you want to change speeds, you can do so by changing the argument of the pause command or the
frequency in the sin function. If you need more exact timing for the output, however, you will need to use
a different set of commands for setting output voltages - these commands will be discussed in a future DAQ
lab. For example, a pause of 0.02 sec does not mean there are 50 samples being sent to the card per second,
it only means that there is a 20 msec delay before MATLAB continues to process the code.

Copyright 2009, Gustafson et al.
DAQ 2 – 4



EGR53L - Fall 2009

2.6 Basic Analog Input
Analog input works in much the same way as analog output - you need to access the card, set up the channels
you want to measure, then use getsample to have the card take measurements from the analog input lines
you added. For the NI 6014e card, there are 16 analog input channels (ACH0 through ACH15). With these,
there are two ways of measuring voltages - single-ended and differential. Single-ended means you read a
single voltage and compare it to a common ground, so you can take up to 16 measurements at a time. The
specific line to connect to the common ground is AIGND. One limitation of this method is the fact that you
cannot measure across just any element in the circuit - you can only measure a voltage relative to the ground
voltage. Imagine someone standing on a step-stool, and assume you want to know their height. If one end
of the tape measure must stay on the floor, you will need to take two measurements - one from the ground
to the top of the person’s head, and one from the group to the top of the stool. To get the height, you will
need to take the difference of these two measurements. The same is true for single-ended measurements.

Differential measurements, on the other hand, take two voltage measurements at once, and the voltage
measurement given is the difference between the two. Note, however, that what is really happening is
that both leads are being measured against that same common ground - you will still need to have AIGND

connected to take voltage measurements. Electronically, then, the same measurements are happening, only
the program will automatically calculate the voltage difference for you. One drawback of this is every
voltage difference you want to measure requires two leads - even if two of the measurements happen to share
a common location, you must have a complete pair of wires for each.

The way the card is set up in MATLAB, there are eight available differential voltage channels - 0 through
7. The voltage reported for a particular channel, however, is actually the difference between the voltage
measured on the hardware channel of the same number and the voltage measured on the hardware channel
eight higher. For example if you are using channel 4 in differential mode, you are really asking for the
difference in voltage between ACH4 and ACH12. Differential channel 6 is the difference between ACH6 and
ACH14. This numbering system explains in part the particular placement of the hardware channels on the
CB-68LP board - the differential pairs are generally positioned with one directly under the other in a column.
The only differential input pair that is split across columns is the ACH4-ACH12 pair.

To begin analyzing analog input, save your BasicAOutput.m script from above, then use Save As... to
save it as BasicAIO.m. You will be using much of the same code as before. First you will need to add some
input channels. Just beneath the code that added the output channels, type in:

13 % Create Analog Input Object

14 AI = analoginput(’nidaq ’, 1)

15

16 % Add channels to Analog Input Object

17 addchannel(AI, [0 4])

and when you run the code, MATLAB will print

Display Summary of Analog Input (AI) Object Using ’PCI -6014 ’.

Acquisition Parameters: 1000 samples per second on each channel.

1000 samples per trigger on each channel.

1 sec. of data to be logged upon START.

Log data to ’Memory’ on trigger.

Trigger Parameters: 1 ’Immediate ’ trigger(s) on START.

Engine status: Waiting for START.

0 samples acquired since starting.

0 samples available for GETDATA.

AI object contains no channels.

to the screen in response to creating AI and will print

Copyright 2009, Gustafson et al.
DAQ 2 – 5



EGR53L - Fall 2009

Index: ChannelName : HwChannel : InputRange : SensorRange : UnitsRange : Units:

1 ’’ 0 [-5 5] [-5 5] [-5 5] ’Volts ’

2 ’’ 4 [-5 5] [-5 5] [-5 5] ’Volts ’

in response to adding the two channels. Note that only the first hardware channel of the differential pair
is shown. Still, the first indexed channel HwChannel 0 will monitor the difference in voltages between ACH0

and ACH8 and the second indexed channel will monitor ACH4 and ACH12. As an aside, it should be clear that
you cannot add hardware channels 8 or above when using differential inputs - those are already in use as the
second part of a differential pair!

There are several defaults to notice for the analog input object and channels. First of all, the input
object is set up to receive 1000 samples per second on each channel and to take 1 sec. of data once triggered.
The cards are actually capable of taking 200000 samples per second, distributed across any open channels.
Second, the card is reporting that no data has been acquired and no data is available for the getdata

command. The latter part will only be relevant when we start using the timed (synchronous) mode for the
cards.

When the channels are added, note that the default case is to measure between -5 V and +5 V. For this
card, the values can be set to ranges of ±50 mV, ±500 mV, ±5 V, and ±10 V, depending on which range
will give you the best precision while simultaneously being large enough to capture all your voltages. For
this lab, all voltages will be within the range of ±5 V.

Notice that the index values are 1 and 2 again since you are opening up channels on a new input object.
Unlike digital I/O, where all the lines were on a single object and you had to specify which were inputs
and which were outputs, the input and output objects for analog voltages are separate. For this circuit,
channel 0 - which is the voltage difference between ACH0 and ACH8 - will be measuring the voltage across
the left-hand circuit (the sum of the voltage drops across the resistor and the green LED) while channel
4 - which is the voltage difference between ACH4 and ACH12 - will be measuring the voltage across the
right-hand circuit.

The network listing, including the new wires you need to connect, is in Table 2.2 on page DAQ 2 – 15. Go
ahead and connect the wires as specified in the table, making sure you have connected them to the proper
lines of the CB-68LP. The code you need to add to take measurements goes in the for loop, just under the
putsample command, on line 32:

24 % Use loop to set several different voltages

25 for k=1:300

26 % Calculate voltages for each channel

27 Vout0 = 2.5+2.5*sin(2*pi*k/100);

28 Vout1 = 2.5+2.5*cos(2*pi*k/100);

29 % Put voltages to each output channel

30 putsample(AO, [Vout0 Vout1])

31 % Read voltages from all input channels

32 Voltages(k,:) = getsample(AI);

33 pause (0.02)

34 end

The reason for the Voltages(k,:) is that the getsample command will have, as an output, a row vector
containing the measured voltages for each of the differential channels you are looking at - in this case, a 1x2
vector each time getsample is called since there are two open channels. At the end of the run, the Voltages
variable will thus be a 300x2 matrix of the voltages measured across the combination of the resistor and the
LED. If you add the commands

36 % Plot voltages versus index

37 n = 1:k;

38 Vleft = Voltages(: ,1);

39 Vright = Voltages(: ,2);

40 plot(n, Vleft , ’g’, n, Vright , ’r’)

41 legend(’Green LED ’, ’Red LED ’, 0)

Copyright 2009, Gustafson et al.
DAQ 2 – 6



EGR53L - Fall 2009

after the end of the for loop, you will see the voltages measured as a function of the index of the matrix.
Again, the timing is not precise here so despite the channels measuring the sinusoid as generated by the
output channels, the graph may not look exactly like a sinusoid. Generally, however, the loop will take about
the same amount of time to complete each run, so the graph should be close. A sample is provided on the
supplemental Pratt Pundit page for this lab.

Go ahead and experiment with some different functions for the outputs. For example, you might try the
following for lines 27 and 28 in your code:

• Two sinusoids at the same frequency and phase:

Vout0 = 2.5+2.5*sin(2*pi*k/100);

Vout1 = 2.5+2.5*sin(2*pi*k/100);

• Two sinusoids at different frequencies:

Vout0 = 2.5+2.5*sin(2*pi*k/100);

Vout1 = 2.5+2.5*sin(4*pi*k/100);

• Two lines - one with a positive slope and one with a negative slope:

Vout0 = 5 * (k/300);

Vout1 = 5 * (1 - (k/300));

• Two sinusoids at increasing frequencies:

Vout0 = (2.5+2.5*sin(2*pi*k.^1.8/1200));

Vout1 = Vout0;

• Two random signals:

Vout0 = 5*rand(1);

Vout1 = 5*rand(1);

If you put in your own functions, just make sure the values assigned to the voltages remain greater than -1
V and less than 5 V. The -1 V limit is set to make sure you do not break an LED by applying too much
reverse voltage; the 5 V limit comes into play because the DAQ card is not set to measure anything higher
- voltages greater than 5 V will be read as 5 V - a process called clipping.

Copyright 2009, Gustafson et al.
DAQ 2 – 7



EGR53L - Fall 2009

2.7 Assignment
The assignment for this lab includes two major parts. First, you will add measurement lines to get more
information about the voltages in your circuit. Specifically, in addition to the total voltage across the resistors
and LEDs together, you will measure the voltage across each resistor and the voltage across each LED.

Next, you will use this circuit to obtain data about the six LEDs - small green, small red, large green,
large red, rectangular green, and rectangular red. You and your partner(s) will then graph the data in a
plot broken up into six subplots, where each will contain three lines - the total voltage across a resistor-LED
combination, the voltage across just the resistor, and the voltage across just the LED. From these graphs,
you will be able to determine when each LED turns on and whether LED shape or color matter. You will
then submit that information as well as the answers to some questions on a handout provided in class.
Finally, you will copy all your files and graphs to your OIT account.

It is important to understand how LEDs work, and to do that better, you will be examining the electrical
response of the LED to an external voltage as it increases from -1 V to 5 V. For this part of the assignment,
you will actually be taking six voltage measurements simultaneously. You will be measuring the total
voltages just as you are now, but you will be adding a measurement for the voltage across each resistor and
a measurement across each LED.

2.7.1 Accessing Voltage Information on Multiple Channels

The critical part about adding more measurements is understanding the differences among what is called a
channel, what the number attached to an ACH is, and how MATLAB access the data. In differential mode, the
channel - or HwChannel - refers to which pair of voltages are going to be measured. Channel 3, for example,
refers to difference between voltages measured on ACH3 and ACH 11. The individual ACH wires themselves
will be measuring voltages relative to ground. In differential mode, then, each channel is comprised of two
ACH lines. Those lines are always 8 apart for this particular DAQ card.

The index is how MATLAB refers to that channel. A channel’s index is determined by the order in which
channels were added to an object. For example, if the line:

addchannel(AI, [3 1 4 2 6 7])

were to show up in your code, you would be telling MATLAB to add channels 3, 1, 4, 2, 6, and 7 - in that
order - to the object called AI. The voltage measured as channel 3 - which is the voltage difference between
ACH3 and ACH11 - would be considered the first voltage since channel 3 was added first. It would thus have
an index of 1. Channel 6 - the difference between ACH6 and ACH14 - would have an index of 5 since it was
opened fifth.

When using the getsample command, the voltages returned will be in the same order as the channels
were added. For example, if the addchannel command above were followed with

MyVals = getsample(AI)

MyVals matrix would be a 1x6 matrix with voltages measured on channels 3, 1, 4, 2, 6, 7, respectively. If
you were to want to pull out a specific voltage - say the voltage on channel 2, you would first have to note
that channel 2 was the fourth channel opened. Then you could write:

Channel2Voltage = MyVals (4)

For the assignment at hand, you need to take six different measurements. In this case, it may be easiest
to use channels 0, 1, and 2 for the left (green) side and channels 4, 5, and 6 for the right (red) side. Note
that channels 3 and 7 are not used - MATLAB is fine with skipping channels.

Copyright 2009, Gustafson et al.
DAQ 2 – 8



EGR53L - Fall 2009

2.7.2 Altering Your Script and Circuit

First, save the BasicAIO.m script as

AIO_NETID1_NETID2.m

where NETID1 and NETID2 are the NET IDs of the people in the group. Append the file name as necessary
if there are more people in the group. For example, mrg, wns, and rap3 would create a script named:

AIO_mrg_wns_rap3.m

Add comments to the top as follows:

% Group member 1: NAME (ID)

% Group member 2: NAME (ID)

% Group member 3: NAME (ID) (if needed)

% We have all followed the Community Standard (ID1 , ID2 , ID3 , etc)

so again, in the above case, the file used by mrg, wns, and rap3 would begin:

% Group member 1: Michael Gustafson (mrg)

% Group member 2: Rebecca Simmons (rap3)

% Group member 3: W. Neal Simmons (wns)

% We have all followed the Community Standard (mrg , rap3 , wns)

Next, change the line that added channels to the input object to:

% Add channels to Analog Input Object

addchannel(AI, [0 1 2 4 5 6])

and add the wires as specified in Table 2.3 on page DAQ 2 – 16. This will set up the card and input object
as follows:

Index Channel ACH Voltage

1 0 ACH0 and ACH8 Total, left (green)

2 1 ACH1 and ACH9 Resistor, left (green)

3 2 ACH2 and ACH10 LED, left (green)

4 4 ACH4 and ACH12 Total, right (red)

5 5 ACH5 and ACH13 Resistor, right (red)

6 6 ACH6 and ACH14 LED, right (red)

Now, change the functions in the for loop such that the output voltages will go from -1 V to 5 V for
both output channels as k goes from 1 to 300. That is, change the Vout0 and Vout1 lines to:

Vout0 = -1+6*(k -1)/299;

Vout1 = Vout0;

Next, you will want to quickly produce a figure by plotting all six voltages at once. This is so you can verify
that the six measurements were properly taken. You will post-process the data in another file to actually
create your final plot. Replacing the lines

% Plot voltages versus index

n = 1:k;

Vleft = Voltages(: ,1);

Vright = Voltages(: ,2);

plot(n, Vleft , ’g’, n, Vright, ’r’)

legend(’Green LED ’, ’Red LED ’, 0)

Copyright 2009, Gustafson et al.
DAQ 2 – 9



EGR53L - Fall 2009

with a simple

% Plot Voltages matrix

plot(Voltages)

will ask MATLAB to plot the 300x6 matrix obtained from the looped getsample command. Recall that
plotting a matrix in MATLAB means plotting each column in its own line using MATLAB’s color wheel.
The default colors are, in order, blue, green, red, cyan, magenta, yellow, black, after which MATLAB repeats
the colors. In this case, the blue and cyan lines are the total voltages, the green and magenta lines are the
resistor voltages, and the red and yellow voltages are the LED voltages. Some of the lines may be “hidden”
behind other lines if the measurements are nearly the same.

At this point, you should make sure that your six lines make sense. The two lines representing total
voltage should be straight, starting at -1 V when k=1 and growing to 5 V when k=300. The two lines
representing the LED voltages will track along that same path, then at some point take a fairly hard right,
as if the voltage across the LEDs simply could not keep up any more. The “break point” may be different
for the two LEDs, but not vastly so. Finally, the voltage across the resistors will start at 0 V and remain
there until the same time as the LEDs make their break - at that point, the resistor voltages will begin to
rise, making up for the voltage difference between the total voltage and the now-lagging LED voltage. An
example of this graph is presented at the Pratt Pundit page for this lab.

Note that your lines may have very small amounts of noise (jaggies) in them, but should not have wild
oscillations. Also, make sure none of your voltages goes well below -1 V or above 5 V. If any of that happens,
you have likely miswired something. Check your wiring again and run the program. When you believe you
have successfully measured the six voltages for the small LEDs, have a TA check your graph.

2.7.3 LED Curves - Small LEDs

Once you are sure you have good data, type the following in the command window:

SmallVoltages = Voltages

save SmallData SmallVoltages

The file SmallData.mat now contains the values you just measured. This will be useful for your plots later.

2.7.4 LED Curves - Large LEDs

Once you obtain, verify, and save data for the small LEDs, you will want to do the same for the large LEDs.
Replace the small LEDs with the large version of the same color and re-run your program. Your graphs
should be quite similar to the graphs for the small LEDs, though it is possible that the break points will be
different. Make sure your graph makes sense, check with a TA if you desire, then type the following in the
command window:

LargeVoltages = Voltages

save LargeData LargeVoltages

2.7.5 LED Curves - Rectangular LEDs

Once you obtain, verify, and save data for the large LEDs, you will want to do the same for the rectangular
LEDs. Once you get a good graph, type the following in the command window:

RectVoltages = Voltages

save RectData RectVoltages

Copyright 2009, Gustafson et al.
DAQ 2 – 10



EGR53L - Fall 2009

2.7.6 LED Driver Circuit Voltage Plots

Having saved the three data files containing information about all six LEDs, you will write a script called

VoltagePlotter_NETID1_NETID2 .m

where NETID1 and NETID2 are the NET IDs of the people in the group. Append the file name as necessary
if there are more people in the group. For example, mrg, wns, and rap3 would create a script named:

VoltagePlotter_mrg_wns_rap3 .m

Again, add comments to the top as follows:

% Group member 1: NAME (ID)

% Group member 2: NAME (ID)

% Group member 3: NAME (ID) (if needed)

% We have all followed the Community Standard (ID1 , ID2 , ID3 , etc)

so, as in the above case, the file used by mrg, wns, and rap3 would begin:

% Group member 1: Michael Gustafson (mrg)

% Group member 2: Rebecca Simmons (rap3)

% Group member 3: W. Neal Simmons (wns)

% We have all followed the Community Standard (mrg , rap3 , wns)

You will use this script to produce the graphical information you need to determine how color and shape
may impact when the LED turns on. You script should first clear the workspace and any graphs that
already exist. You will then load the three data files. To make reading easier, you should put each voltage
measurement into its own matrix. For example, you might use the following to split the data obtained when
using the small LEDs:

load SmallData

SmallGreenTotal = SmallVoltages(: ,1);

SmallGreenRes = SmallVoltages(: ,2);

SmallGreenLED = SmallVoltages(: ,3);

SmallRedTotal = SmallVoltages(: ,4);

SmallRedRes = SmallVoltages(: ,5);

SmallRedLED = SmallVoltages(: ,6);

Copy this code to make whatever changes you need for the large and rectangular LED data. Next, for each
LED produce a plot of the total voltage, the resistor voltage, and the LED voltage as a function of the total
voltage. While just having the numbers 1 through 300 as the x axis was fine above for making sure the data
was saved properly, such an axis provides no easily-obtained useful information. In the subplots, put the
green LEDs on the left and the red LEDs on the right; put the small LEDs on the top, the large LEDs in
the middle, and the rectangular LEDs on the bottom. That is:

subplot(3,2,1)

% small green plotting commands

subplot(3,2,2)

% small red plotting commands

subplot(3,2,3)

% large green plotting commands

subplot(3,2,4)

% large red plotting commands

subplot(3,2,5)

% rect green plotting commands

subplot(3,2,6)

% rect red plotting commands

Copyright 2009, Gustafson et al.
DAQ 2 – 11



EGR53L - Fall 2009

Turn the grid on for each subplot (grid on) and be sure to include a title for each of the subplots indicating
which LED is being shown. Do not include a legend for each subplot; just be consistent about having the
total voltage as a solid line, the LED voltage as a dashed line, and the resistor voltage as a dotted line. Save
the plot as a PNG file using the command:

print -dpng DAQ2_NETID1_NETID2

where NETID1 and NETID2 are the NET IDs of the people in the group. Append the file name as necessary
if there are more people in the group. For example, mrg, wns, and rap3 would create a graph using:

print -dpng DAQ2_mrg_wns_rap3

To have MATLAB help you determine the cutoff voltages, you can use the zoom feature and the ginput

command. Once the plot has been created, expand the figure window to full size and zoom in on the
particular subfigure containing the LED you want to characterize. Keep zooming until you clearly see the
point at which the resistor voltage starts to turn away from 0 - in this case, when the resistor voltage is
above 0.001 V. Next, type:

[VX, VY] = ginput (1)

in the command window. This will bring up crosshairs on the figure window. Click at the point on the
top-left graph where the resistor voltage line intersects 0.001 V. When you are done clicking, MATLAB will
report the x and y values of where you clicked by storing them in the VX and VY vectors, respectively. In
this case, the VY value should be very close to 0.001 V and VX value should be the cutoff voltage of the LED.
Repeat this process for the other six subplots and be sure to enter the data on the worksheet you are to fill
out.

Copyright 2009, Gustafson et al.
DAQ 2 – 12



EGR53L - Fall 2009

2.8 Lab Report
You will be submitting your answers on a handout distributed at the beginning of lab. You must also make
sure to store your code and graph in your OIT directory - instructions for that will come later. Given the
information you have collected for the six LEDs, you will answer the following:

(1) Based on your graphs, what is the approximate cutoff voltage for each of the different LEDs?

(2) Based on your answer above, discuss how you think the shape and/or color of an LED changes these
values and whether the differences in these values are significant relative to the averages of the values.
That is, if the values were 10.1, 10.2, 10.0, 10.0, 10.1, and 10.2, the overall differences (at most 0.2)
would be small relative to the average of 10.1; on the other hand, if the values were 0.4, 0.5, 0.6, 0.4,
0.5, and 0.6, the overall differences (at most 0.2) are significant relative to the average of 0.5.

While grading, the TAs will go into the directories of the people in each group to verify the graph and
also that files have been transferred over. Make sure you have copied everything into the correct directory.
Go to the Start Button, then All Programs, then SSH Secure Shell, then Secure File Transfer Client. Log
into your favorite OIT machine. The left side of the screen will be the file structure for the PC you are on
and the right side will be the file structure of your OIT account. Note that on the PC, your files are stored
in

C:\Documents and Settings\mrglocal\My Documents\MATLAB

On the OIT account, go into your EGR53 directory and then create a new folder called daq2. You can
then drag and drop all your scripts (.m), data (.mat), and graphics (.png) files into your daq2 folder. You
do not need to copy any other files, such as .asv files. Make sure that each person in the group has all the
required data and script files for this lab. There should be four scripts (BasicAOutput, BasicAIO, AIO , and
VoltagePlotter ), three data files (one each for the small, large, and rectangular LEDs), and one picture.

2.9 Cleaning Up
Once you are sure your files have been copied over, disassemble your circuit and put all the parts into the
bucket. Delete all the files in MATLAB’s Current Directory (either by selecting them all in the Current

Directory window in MATLAB and deleting them or by going to the directory listed above and deleting
the files). Next, empty the recycling bin on the desktop.

When you think your lab station is cleaned up and the files are cleared off, ask a TA to verify the contents
of the bucket, the contents of your MATLAB directory, and the contents of the recycling bin - this will serve as
attendance for the lab and you cannot receive a grade higher than 0 for this work without getting checked
off for having properly stowed your gear and dumped your files.

For this week, leave MATLAB up and running and leave the Recycling Bin folder open on the screen.
Do not log off the PC. Put the parts bin, breadboard, screwdriver, and wires back to the front of the room.

Copyright 2009, Gustafson et al.
DAQ 2 – 13



EGR53L - Fall 2009

2.10 Circuit Diagrams and Network Listings

2.10.1 Basic Analog Output

Item First Second Note

LEDG Pin J7 Pin Y7 Put longer lead of LED in row J

LEDR Pin J19 Pin Y19 Put longer lead of LED in row J

RES1 Pin D7 Pin G7

RES2 Pin D19 Pin G19

RED1 Pin A7 Line L22 DAC0OUT

RED2 Pin A19 Line L21 DAC1OUT

BLK1 Pin Y23 Line L54 AOGND

Table 2.1: Network Listing for Basic Analog Output

DAC0OUT DAC1OUT
R R

LEDG LEDR

AOGND

Figure 2.1: Circuit Diagram for Basic Analog Output

Copyright 2009, Gustafson et al.
DAQ 2 – 14



EGR53L - Fall 2009

2.10.2 Basic Analog Input/Output

Addition Item First Second Note

LEDG Pin J7 Pin Y7 Put longer lead of LED in row J

LEDR Pin J19 Pin Y19 Put longer lead of LED in row J

RES1 Pin D7 Pin G7

RES2 Pin D19 Pin G19

RED1 Pin A7 Line L22 DAC0OUT

RED2 Pin A19 Line L21 DAC1OUT

BLK1 Pin Y23 Line L54 AOGND

* BLK2 Pin Y22 Line L56 AIGND

* RED3 Pin B7 Line L68 ACH0: v
+

total,left

* BLK3 Pin Y5 Line L34 ACH8: v
−

total,left

* RED4 Pin B19 Line L28 ACH4: v
+

total,right

* BLK4 Pin Y17 Line L61 ACH12: v
−

total,right

Table 2.2: Network Listing for Basic Analog Input/Output

DAC0OUT DAC1OUT
R R

LEDG LEDR

AOGND

vtotal,left

AIGND

ACH0

ACH8

vtotal,right

ACH4

ACH12

Figure 2.2: Circuit Diagram for Basic Analog Input/Output

Copyright 2009, Gustafson et al.
DAQ 2 – 15



EGR53L - Fall 2009

2.10.3 LED Curves

Addition Item First Second Note

LEDG Pin J7 Pin Y7 Put longer lead of LED in row J

LEDR Pin J19 Pin Y19 Put longer lead of LED in row J

RES1 Pin D7 Pin G7

RES2 Pin D19 Pin G19

RED1 Pin A7 Line L22 DAC0OUT

RED2 Pin A19 Line L21 DAC1OUT

BLK1 Pin Y23 Line L54 AOGND

BLK2 Pin Y22 Line L56 AIGND

RED3 Pin B7 Line L68 ACH0: v
+

total,left

BLK3 Pin Y5 Line L34 ACH8: v
−

total,left

* GRN1 Pin C7 Line L33 ACH1: v
+

R,left

* BLK5 Pin H7 Line L66 ACH9: v
−

R,left

* RED5 Pin I7 Line L65 ACH2: v
+

LED,left

* GRN2 Pin Y3 Line L31 ACH10: v
−

LED,left

RED4 Pin B19 Line L28 ACH4: v
+

total,right

BLK4 Pin Y17 Line L61 ACH12: v
−

total,right

* GRN3 Pin C19 Line L60 ACH5: v
+

R,right

* BLK6 Pin H19 Line L26 ACH13: v
−

R,right

* RED6 Pin I19 Line L25 ACH6: v
+

LED,right

* GRN4 Pin Y16 Line L58 ACH14: v
−

LED,right

Table 2.3: Network Listing for LED Curves

DAC0OUT DAC1OUT
R R

LEDG LEDR

AOGND

vtotal,left

AIGND

ACH0

ACH8

vtotal,right

ACH4

ACH12
vLED,left vLED,right

vR,rightvR,left

Figure 2.3: Circuit Diagram for LED Curves

Copyright 2009, Gustafson et al.
DAQ 2 – 16



EGR53L - Fall 2009

2.11 Code for BasicAOutput.m
1 % Clear out workspace

2 clear

3

4 % Clear out DAQ objects

5 delete(daqfind)

6

7 % Create Analog Output Object

8 AO = analogoutput(’nidaq’, 1)

9

10 % Add channels to Analog Output Object

11 addchannel(AO, [0 1])

12

13

14

15

16

17

18

19 % Write values to output channels

20 putsample(AO, [5 5])

21 pause

22 putsample(AO, [0 0])

23

24 % Use loop to set several different voltages

25 for k=1:300

26 % Calculate voltages for each channel

27 Vout0 = 2.5+2.5*sin(2*pi*k/100);

28 Vout1 = 2.5+2.5*cos(2*pi*k/100);

29 % Put voltages to each output channel

30 putsample(AO, [Vout0 Vout1])

31 % leave line 31 blank for now

32 % leave line 32 blank for now

33 pause(0.02)

34 end

35

36

37

38

39

40

41

42

43 % Turn all outputs off

44 putsample(AO, [0 0])

Copyright 2009, Gustafson et al.
DAQ 2 – 17



EGR53L - Fall 2009

2.12 Code for BasicAIO.m
1 % Clear out workspace

2 clear

3

4 % Clear out DAQ object

5 delete(daqfind)

6

7 % Create Analog Output Object

8 AO = analogoutput(’nidaq’, 1)

9

10 % Add channels to Analog Output Object

11 addchannel(AO, [0 1])

12

13 % Create Analog Input Object

14 AI = analoginput(’nidaq’, 1)

15

16 % Add channels to Analog Input Object

17 addchannel(AI, [0 4])

18

19 % Write values to output channels

20 putsample(AO, [5 5]);

21 pause

22 putsample(AO, [0 0]);

23

24 % Use loop to set several different voltages

25 for k=1:300

26 % Calculate voltages for each channel

27 Vout0 = 2.5+2.5*sin(2*pi*k/100);

28 Vout1 = 2.5+2.5*cos(2*pi*k/100);

29 % Put voltages to each output channel

30 putsample(AO, [Vout0 Vout1])

31 % Read voltages from all input channels

32 Voltages(k,:) = getsample(AI);

33 pause(0.02)

34 end

35

36 % Plot voltages versus index

37 n = 1:k;

38 Vleft = Voltages(:,1);

39 Vright = Voltages(:,2);

40 plot(n, Vleft, ’g’, n, Vright, ’r’)

41 legend(’Green LED’, ’Red LED’, 0)

42

43 % Turn all outputs off

44 putsample(AO, [0 0])

Copyright 2009, Gustafson et al.
DAQ 2 – 18


