I
(1) $A+\infty \quad r_{i} \rightarrow \infty \quad r_{0} \rightarrow 0$
(2)

$$
\frac{2}{5} \frac{d n}{d t}+y=-3 \quad \tau=2 / 5 \quad y_{f}=-3 \quad y_{i}=10
$$

$$
y=-3+13 e^{-t / 0.4}
$$

(3) $4 \angle-35^{\circ}+5 L-8^{\circ}=8.754 L-19.97 \rightarrow 8>54 \cos \left(160 t-20^{\circ}\right)$
(4) $C A P: \quad R+\frac{1}{j \omega C}=2000-j 4000 \quad R=2000 \quad C=\frac{1}{1000 \omega}=250 \mathrm{nF}$

CAP $\frac{1}{R}+j \omega C=.0001+j .0002$

$$
R=\frac{1}{.0001}=10000 \quad C=\frac{.0002}{1000}=200 \mathrm{nF}
$$

$$
\begin{aligned}
& V_{\text {in }}=5 \quad z=2000-j 4000 \\
& \mathbb{I}=\frac{V}{Z}=1.118 \angle 6.34^{\circ} \mathrm{mt} \\
& i(t)=1.118 \cos \left(1000 t+6.34^{\circ}\right) \mathrm{mt} \\
& p(t)=v(t) i(t)=5.59 \cos (1000 t) \cos (1000 t+6.34) \mathrm{mW}
\end{aligned}
$$

(1) $t u(t-1)+2 e^{-4 t} u(t-1)$

$$
\begin{gathered}
(t-1) u(t-1)+u(t-1)+2 e^{-4(t-1+1)} u(t-1) \\
(t-1) u(t-1)+u(t-1)+2 e^{-4} e^{-4(t-1)} u(t-1) \\
e^{-5}\left(\frac{1}{s^{2}}+\frac{1}{s}+\frac{2 e^{-4}}{s+4}\right)
\end{gathered}
$$

(2) $\frac{9(s+8)}{(s+8)^{2}+7^{2}}+\frac{6(4)}{(s+5)^{2}+4^{2}}$
(3)

$$
\begin{gathered}
\frac{s+20}{s^{2}+10 s+21}=\frac{A}{s+3}+\frac{B}{s+7} \quad A=\lim _{s \rightarrow 3} \frac{s+20}{s+7}=\frac{17}{y} \quad B=\lim _{s \rightarrow-7} \frac{s+20}{s+3}=\frac{-13}{4} \\
\frac{17 e^{-3 t}-13 e^{-7 t}}{4} u(t)
\end{gathered}
$$

(1)

$$
\begin{array}{r}
\frac{s+20}{s^{2}+10 s+34}=\frac{s+20}{(s+5)^{2}+(3)^{2}}=\frac{(s+5)+5(3)}{(s+5)^{2}+3^{2}} \\
e^{-5 t}(\cos (3 t)+5 \sin (3 t)) u(t)
\end{array}
$$

(5)

$$
\frac{s+20}{(s+5)^{2}}=\frac{(s+5)}{(s+5)^{2}}+\frac{15}{\left((5+5)^{2}\right.} \rightarrow\left(e^{-5 t}+15 t e^{-s t}\right) u(t)
$$

$$
\begin{aligned}
& v_{c}\left(0^{-}\right)=-R_{2} \bar{i}_{b} \\
& i_{c}\left(v^{-}\right)=0 \\
& v_{L}\left(0^{-}\right)=0 \\
& i_{L}\left(0^{-}\right)=\frac{V_{a}}{R_{1}+R_{3}}+i b \frac{R_{1} \| R_{3}}{R_{3}}=\frac{V_{a}+R_{1 b}}{R_{1}+R_{3}}
\end{aligned}
$$

$t=0^{+}$

$$
\begin{aligned}
v_{c}\left(0^{-}\right) & =V_{c}\left(0^{+}\right) \\
i_{c}\left(0^{+}\right) & =\frac{v_{a}-v_{c}\left(0^{-}\right)}{R_{1}}-\frac{v_{c}\left(0^{-}\right)}{R_{2}}-i_{l}\left(0^{-}\right) \\
& =\frac{V_{a}+R_{2} i b}{R_{1}}+i_{b}-\frac{\left(V_{a}+R_{1} i i_{1}\right)}{R_{1}+R_{3}} \\
& =R_{3} v_{a}+\left(\frac{\left.R_{1} R_{2}+R_{2} R_{3}+R_{1} R_{3}\right)}{\left.R_{1}\right)\left(R_{1}+R_{3}\right)} i_{b}\right. \\
V_{L}\left(0^{-}\right) & =v_{c}\left(0^{-}\right)-R_{3} i_{l}\left(0^{-}\right) \\
& =-R_{2} i_{b}-\frac{R_{3} v_{a}}{R_{1}+R_{3}}-\frac{R_{1} R_{3} i b}{R_{1}+R_{3}} \\
i_{L}\left(0^{+}\right) & =i_{L}\left(0^{-}\right) \\
V_{c}(\infty) & =\frac{\left(R_{2} \| R_{3}\right) v_{a}}{\left.R_{1}+\left(R_{2}\right) R_{3}\right)} \\
i_{c}(\infty) & =0 \\
V_{L}(\infty) & =0 \\
i_{c}(\infty) & =\frac{v_{a}}{R_{1}+\left(R_{2} \| R_{3}\right)}\left(\frac{R_{2} \| R_{3}}{R_{3}}\right)
\end{aligned}
$$

$t=0^{+} \quad$ SAME ENERGY!

$$
t \rightarrow \infty
$$

$$
\begin{aligned}
& i_{L}(\infty)=0 \quad V_{c}(\infty)=V_{a} \\
& E=\frac{1}{2} C\left(V_{c}(\infty)\right)^{2}
\end{aligned}
$$

$t>0$

$$
\begin{aligned}
& I=\frac{V_{a}\left(s L+R_{1}\right) c}{\left(s^{2} L c+s R C+1\right)\left(R_{1}+R_{2}\right)} \\
& I_{L}(0)=\lim _{s \rightarrow \infty} s I=\frac{V_{a} C\left(s^{2} L A s R_{1}\right)}{\left(R_{1}+R_{2}\right)\left(s^{2} L C\right) s R(+1)}=\frac{V_{a}}{R_{1}+R_{2}} i_{i L}(\infty)=\lim _{s \rightarrow 0} s I=0 J \\
& I=\frac{(20)\left(50 \cdot 10^{-9}\right)(.01 s+1000)}{\left(s^{2} \cdot 5 \cdot 10^{-10}+s \cdot 5 \cdot 10^{-5}+1\right)(2000)}=\frac{5 \cdot 10^{-10}(.01 s+1000)}{\left(s^{2} \cdot 5 \cdot 10^{-10}+s \cdot s \cdot 10^{-s}+1\right)} \\
& I=\frac{(.01 s+1000)}{s^{2}+s \cdot 10^{s}+2 \cdot 10^{9}}=\frac{A}{s+a}+\frac{B}{s+b} \\
& \frac{-10^{5} \pm \sqrt{10^{10}-8.10^{9}}}{2}=\frac{-10^{5} \pm 4.4721 \cdot 10^{4}}{2} \\
& =-27639,-72361 \\
& A=\lim _{s+27039} \frac{.01 s+6010}{s+2311}=0.01618 \quad B=\lim _{s \rightarrow-72361} \frac{0.15+p 000}{s+27639}=-0.006180 \\
& i_{L}(t)=\left(16.18 e^{-2739 t}-6.18 e^{-7236 t}\right) u(t) m \text { ! }
\end{aligned}
$$

$$
\begin{aligned}
i_{x}, x & =-\frac{R_{1} \| R_{2} i_{s}}{R_{2}} \\
N_{o c} & =\left(R_{1} \| R_{2}\right) i_{s}-r_{i x}=\left(R_{1} \| R_{2}\right)_{i s}+\frac{r}{R_{2}}\left(R_{1} \| R_{2}\right)_{s} \\
& =\left(R_{1} \| R_{2}\right) r_{s}\left(1+\frac{r}{R_{2}}\right)=\frac{R_{1}\left(R_{2}+r\right)}{R_{1}+R_{2}} i_{s}
\end{aligned}
$$

iss

$$
\begin{aligned}
R_{T h}=\frac{V_{0}}{i_{\text {Sc }}} & =\frac{R_{1}\left(R_{2}+r\right) R_{2}\left(R_{1}-r\right)}{\left(R_{1}+R_{2}\right)} R_{1}\left(R_{2}+r\right) \\
& =\frac{R_{2}\left(R_{1}-r\right)}{R_{1}+R_{2}}
\end{aligned}
$$

$$
\begin{aligned}
& K u_{1} l_{3} \cdot R_{2}(i x, s+i s c)+r i x, s c=0 \\
& i x_{1 s c}=\frac{-R_{2} i s s}{R_{z}+r} \\
& K V_{1} 1_{2}:-R_{1}\left(i_{s}+i i_{1 s c}\right)-R_{2}(i x, s+i s c)=0 \\
& =-\left(R_{1}+R_{2}\right) i_{x_{1 s}}-R_{\text {sc }}=R_{1} i_{s} \\
& \frac{\left(R_{1}+R_{2}\right) R_{2} i s c}{R_{2}+r}-R_{2 i s c}=R_{1} i_{s} \\
& \left(R_{1} R_{2}-r R_{2}\right)_{i s c}=R_{1}\left(R_{2}+r\right) \text { is } \\
& i_{s c}=\frac{R_{1}\left(R_{2}+r\right)}{R_{1} R_{2}-r R_{2}} \text { is }
\end{aligned}
$$

c) $R_{L}=R_{T h}$

$$
P_{\text {del }}=\frac{v_{o c}^{2}}{4 R_{T H}}=\frac{i_{s c}^{2} R_{T H}}{4}
$$

(1)

(2)

$$
\begin{aligned}
& \frac{10}{1+j(02)\left(\frac{w}{400 w}-\frac{4000}{w}\right) \text { or } \quad \frac{10 \cdot 20000 \cdot j w}{(j \omega)^{2}+20000 \cdot j \omega+16000000}} \\
& \zeta=\frac{1}{2 Q}=2.5 \quad B W ; 2 \zeta w_{n}=20000 \\
& w_{\text {cm, lin }}=w_{n} \sqrt{1+\zeta^{2}}=10770 \\
& w_{\text {cutifif }}=w_{\text {arlin }} \pm B W / 2=770,20770
\end{aligned}
$$

7

(3)

$$
\begin{aligned}
& Z_{F 1}=R_{3} \quad Z_{n 1}=R_{1}+\frac{1}{S C_{1}}=\frac{s R_{1} C_{1}+1}{s C_{1}} \quad H_{1}=\frac{-s R_{3} C_{1}}{s R_{1} C_{1}+1} \quad H P F \\
& Z_{f 2}=R_{y} \quad Z_{n 2}=\frac{\frac{R_{2}}{s C_{2}}}{R_{2}+\frac{1}{S C} C_{2}}=\frac{R_{2}}{s R_{2} C_{2}+1} \quad H_{2}=\frac{-R_{2}}{R_{1}\left(s R_{2} C_{2}+1\right)} \quad \angle P F \\
& H_{3}=H_{1} H_{2}=\frac{s R_{2} R_{3} C_{1}}{R_{1}\left(s R_{1} C_{1}+1\right)\left(s R_{2} C_{2}+1\right)}
\end{aligned}
$$

