目utke $\mathfrak{Z l n t i f e r s i t y}$

EGR 224 Spring 2018
Test I
Michael R. Gustafson II

Name (please print)
In keeping with the Community Standard, I have neither provided nor received any assistance on this test. I understand if it is later determined that I gave or received assistance, I will be brought before the Undergraduate Conduct Board and, if found responsible for academic dishonesty or academic contempt, fail the class. I also understand that I am not allowed to speak to anyone except the instructor about any aspect of this test until the instructor announces it is allowed. I understand if it is later determined that I did speak to another person about the test before the instructor said it was allowed, I will be brought before the Undergraduate Conduct Board and, if found responsible for academic dishonesty or academic contempt, fail the class.

Signature:

Instructions

First - please turn off any cell phones or other annoyance-producing devices. Vibrate mode is not enough - your device needs to be in a mode where it will make no sounds during the course of the test, including the vibrate buzz or those acknowledging receipt of a text or voicemail.

Please be sure to put each problem on its own page or pages - do not write answers to more than one problem on any piece of paper and do not use the back of a problem for work on a different problem. You will be turning in each of the problems independently. This cover page should be stapled to the front of Problem 1.

Make sure that your name and NET ID are clearly written at the top of every page, just in case problem parts come loose in the shuffle. Make sure that the work you are submitting for an answer is clearly marked as such. Finally, when turning in the test, individually staple all the work for each problem and place each problem's work in the appropriate folder.

Note that there may be people taking the test after you, so you are not allowed to talk about the test - even to people outside of this class - until I send along the OK. This includes talking about the specific problem types, how long it took you, how hard you thought it was - really anything. Please maintain the integrity of this test.

You may use the $\|$ symbol for resistances in parallel and do not need to expand that construction. Be clear with your use of parentheses, however; simply writing something like

$$
R_{\mathrm{e} q}=R_{1}+R_{2} \| R_{3}+R_{4}
$$

is too vague since it could refer to any of the four combinations below:

Name (please print):
Community Standard (print NetID):

Problem I: [24 pts.] Equivalents and Division

For all parts of this problem, you can carefully use the \| symbol (and parentheses) as appropriate and do not need to simplify expressions using that symbol.
(1) A 6 V source is connected in parallel to three resistors in parallel, all of the same resistance R_{x}. If the total power delivered by the source is 27 mW ,
(a) Draw the circuit.
(b) What is the current through the source?
(c) What is the value of R_{x} ?
(2) A 6 V source is connected in series to three resistors in series, all of the same resistance R_{y}. If the total power delivered by the source is 27 mW ,
(a) Draw the circuit.
(b) What is the current through the source?
(c) What is the value of R_{y} ?
(3) A 6 V source is connected to a network of three resistors, all of the same resistance $R_{\mathrm{z}}=2 \mathrm{k} \Omega$. If the total power delivered by the source is 27 mW ,
(a) What is the current through the source?
(b) Determine and draw how the resistors are connected to the source. Label your resistors R_{1}, R_{2}, and R_{3} for future reference.
(c) What is the power absorbed by each resistor? Be sure to reference each using the labels in the drawing (for example, calculate $p_{\text {abs }, R_{1}}$. Hint - not all resistors absorb the same amount of power for this circuit.
(4) For the following circuit:

clearly show voltage division to obtain expressions for v_{w} and v_{x} in terms of the resistors and v_{s}.
(5) For the following circuit:

clearly show current division to obtain expressions for i_{y} and i_{z} in terms of the resistors and i_{p}.

Name (please print):
Community Standard (print NetID):

Problem II: [20 pts.] Node Voltage Method

Given the following circuit:

and assuming that constants b and d, the values for the passive elements (R_{1} through R_{4}), and the values for the independent sources (v_{a} and i_{b}) are known,
(1) Clearly demonstrate the use of the Node Voltage Method in labeling unknowns for the circuit and in determining a complete set of linearly independent equations that could be used to solve for these unknowns. List the set of unknowns you believe your equations will find. Please put the list of unknowns and the equations on a separate piece of paper and in a box; you can label the circuit above.
(2) Assuming you are able to solve for those unknowns, write expressions for the following. Put your expressions next to the appropriate bullet below even if your work is elsewhere.

- $p_{\mathrm{abs}, R_{3}}=$
- $p_{\mathrm{del}, \mathrm{CCCS}}=$
- $p_{\mathrm{del}, \mathrm{VCVS}}=$

Name (please print):
Community Standard (print NetID):

Problem III: [20 pts.] Branch / Mesh Current Method

Given the following circuit:

and assuming that constants b and d, the values for the passive elements (R_{1} through R_{4}), and the values for the independent sources (v_{a} and i_{b}) are known,
(1) Clearly demonstrate the use of either the Branch or Mesh Current Method in labeling unknowns for the circuit and in determining a complete set of linearly independent equations that could be used to solve for these unknowns. List the set of unknowns you believe your equations will find. Please put the list of unknowns and the equations on a separate piece of paper and in a box; you can label the circuit above.
(2) Assuming you are able to solve for those unknowns, write expressions for the following. Put your expressions next to the appropriate bullet below even if your work is elsewhere.

- $p_{\mathrm{abs}, R_{3}}=$
- $p_{\mathrm{del}, \mathrm{CCCS}}=$
- $p_{\mathrm{del}, \mathrm{VCVS}}=$

Name (please print):
Community Standard (print NetID):

Problem IV: [16 pts.] Thévenin/Norton I

Note: for the problem below you must fully solve expressions for any variables that are unknown; you cannot simply leave unsolved systems of equations. You do not, however, need to simplify any compound fractions, nor do you need to expand any use of the parallel resistance symbol discussed on the cover page. Furthermore, once a variable is fully solved in terms of known values, that variable can also be considered "known" - you do not need to back-substitute. Given the following circuit:

and assuming that the values for the passive elements $\left(R_{1}\right.$ through $\left.R_{3}\right)$ and the values for the independent sources $\left(v_{\mathrm{a}}, i_{\mathrm{b}}\right.$, v_{c}) are known,
(1) Draw both the Thévenin and Norton equivalent circuits with respect to terminals α and β in terms of the known values. Be sure to show your process clearly and indicate where α and β are in your equivalent circuit drawings.
(2) Determine the value of the load that could be placed between terminals α and β that would maximize the power transferred to that load. Also determine the power transferred to that load.

Name (please print):
Community Standard (print NetID):

Problem V: [20 pts.] Thévenin/Norton II

Note: for the parts below you must fully solve expressions for any variables that are unknown; you cannot simply leave unsolved systems of equations. You do not, however, need to simplify any compound fractions, nor do you need to expand any use of the parallel resistance symbol discussed on the cover page. Furthermore, once a variable is fully solved in terms of known values, that variable can also be considered "known" - you do not need to back-substitute.
(1) Given the following circuit:

and assuming that the values for the passive elements $\left(R_{1}\right.$ and $\left.R_{2}\right)$, the value for the source $\left(v_{\mathrm{a}}\right)$, and the value for the constant d are known, draw the Norton equivalent circuit with respect to terminals μ and v in terms of the known values. Be sure to show your process clearly and indicate where μ and v are in your equivalent circuit drawing.
(2) Given the following circuit:

and assuming that the values for the passive elements (R_{1} through R_{3}) and the value for the constant b are known, draw the Thévenin equivalent circuit with respect to terminals ξ and η in terms of the known values. Be sure to show your process clearly and indicate where ξ and η are in your equivalent circuit drawing.

