Buke University Fdmund T. Pratt, Ir. School of Engineering

$\overset{ ext{EE 61 Section 2, Spring 2001}}{ ext{Test IV}}$

Michael R. Gustafson II

Name (please print)	
In keeping with the Honor Code, I have neither provided nor received any assistance derstand if it is later determined that I gave or received assistance, I will fail the class before the Undergraduate Judicial Board.	
Signature:	

Problem I: [30 pts] Thévenin-Norton Equivalent Circuits

(1) Assuming you have a circuit where $\mathbb{V}_{oc} = 8\angle 7^\circ V$, $\mathbb{I}_{sc} = 4\angle 23^\circ A$, and $\omega = 10$ rad/s, draw two Norton equivalent circuits - one with the passive elements in series and one with them in parallel.

(2) Given the circuit above and the known values $v_{\rm s}(t)$, C_2 , L_1 , R_1 , R_2 , R_3 , and g, find $\mathbb{V}_{\rm oc}$, $\mathbb{I}_{\rm sc}$, and $\mathbb{Z}_{\rm th}$ as seen across terminals A-B.

Problem II: [30 pts] Complex Power

Given the circuit above and the known values:

$$v_{\mathrm{s}}(t) = 5\cos(377t + 8^{\circ}) \mathrm{~V}$$

 $L = 650 \mathrm{~mH}$
 $R_{1} = 300 \mathrm{~\Omega}$
 $R_{2} = 700 \mathrm{~\Omega}$

- (1) Find the equivalent impedance $\mathbb Z$ as seen by the voltage source
- (2) Find the complex power delivered by the voltage source, \mathbb{S}_{del}
- (3) Find the power factor; be sure to indicate if it is lagging or leading (hint hint)

Assume you add a 5 μF capacitor in parallel with the voltage source as shown above.

- (a) Find the equivalent impedance \mathbb{Z} as seen by the voltage source
- (b) Find the complex power delivered by the voltage source, \mathbb{S}_{del}
- (c) Find the power factor; be sure to indicate if it is lagging or leading

Problem III: [20 pts] Transformers

Given the circuit above and known values $v_s(t)$, C_2 , R_1 , R_2 , N_1 , and N_2 , find the network function:

$$\mathbb{H}(j\omega) = \frac{\mathbb{V}_{\text{o}}}{\mathbb{V}_{\text{s}}}$$

Problem IV: [20 pts] Mutual Inductance

Given the circuit above and known values $v_s(t)$, L_1 , L_2 , L_3 , M_{12} , M_{13} , M_{23} , R_1 , R_2 , R_3 , write the three mesh current equations in the frequency domain or in the time domain.