Problem I: [20 pts.] Superposition

Given the following circuit:

and known values i_a, v_b, i_c, r, R_1, R_2, and R_3, find i_m using superposition. You must redraw the circuit each time to get full credit for this problem.
Problem II: [15 pts.] Thévenin-Norton I

Given the following circuit:

![Circuit Diagram](image)

and known values i_a, v_b, R_1, and R_2, determine and draw both the Thévenin and Norton equivalent circuits as seen at terminals AZ.
Problem III: [20 pts.] Thévenin-Norton II

Given the following circuit:

![Circuit Diagram]

and known values g, R_1, R_2, and R_3, determine and draw the Thévenin equivalent circuit as seen at terminals AZ.
Problem IV: [20 pts.] Operational Amplifiers

Given the following circuit:

and known values v_s, R_1, R_2, R_3, R_4, and R_5, find v_x in terms of the known values. You may assume both operational amplifiers are ideal.
Problem V: [25 pts.] Inductors and Capacitors

Given the following circuit:

![Circuit Diagram]

and known values \(v_a, i_b, R, L, \) and \(C, \)

(1) find a differential equation for \(v_C \) in terms of the known values. If done correctly, you will end up with a second order differential equation. *Hint: use \(v_C \) and \(i_L \) as your only unknowns to develop two equations for the circuit, then substitute one into the other to get a single equation with \(v_C \) and its derivatives.*

(2) Assume that \(v_a \) and \(i_b \) are constant and that this circuit has been in place for a very long time. Determine the capacitor voltage \(v_C \) and inductor current \(i_L \) in terms of the known values.