Buke University Fdmund T. Pratt, Ir. School of Engineering

$\stackrel{ ext{EE 61 Section 2, Spring 2001}}{ ext{Test II}}$

Michael R. Gustafson II

Name (please print)
In keeping with the Honor Code, I have neither provided nor received any assistance on this test. I understand if it is later determined that I gave or received assistance, I will fail the class and will be brought before the Undergraduate Judicial Board.
Signature

Problem I: [20 pts.] Superposition

Given the following circuit:

and known values i_a , v_b , i_c , r, R_1 , R_2 , and R_3 , find i_m using superposition. You *must* redraw the circuit each time to get full credit for this problem.

Problem II: [15 pts.] Thévenin-Norton I

Given the following circuit:

and known values i_a , v_b , R_1 , and R_2 , determine and draw both the Thévenin and Norton equivalent circuits as seen at terminals AZ.

Problem III: [20 pts.] Thévenin-Norton II

Given the following circuit:

and known values g, R_1 , R_2 , and R_3 , determine and draw the Thévenin equivalent circuit as seen at terminals AZ.

Problem IV: [20 pts.] Operational Amplifiers

Given the following circuit:

and known values v_s , R_1 , R_2 , R_3 , R_4 , and R_5 , find v_x in terms of the known values. You may assume both operational amplifiers are ideal.

Problem V: [25 pts.] Inductors and Capacitors

Given the following circuit:

and known values v_a , i_b , R, L, and C,

- (1) find a differential equation for $v_{\rm C}$ in terms of the known values. If done correctly, you will end up with a second order differential equation. Hint: use $v_{\rm C}$ and $i_{\rm L}$ as your only unknowns to develop two equations for the circuit, then substitute one into the other to get a single equation with $v_{\rm C}$ and its derivatives.
- (2) Assume that v_a and i_b are constant and that this circuit has been in place for a very long time. Determine the capacitor voltage v_C and inductor current i_L in terms of the known values.