Buke University Edmund T. Pratt, Ir. School of Engineering # $\begin{array}{c} \hbox{EE 61 Section 2, Spring 2001} \\ \hbox{Test } I \end{array}$ Michael R. Gustafson II | Name (please print) | | |---|--| | In keeping with the Honor Code, I have neither provided nor received any assistance on to derstand if it is later determined that I gave or received assistance, I will fail the class and before the Undergraduate Judicial Board. | | | Signature: | | #### Problem I: [15 pts] Element Table Fill in the table below. For the **Equation** column, you can put any equation for the given variable in terms of other variables. | Name | Variable | Units | Equation | |-------------|----------|-------|----------| | charge | | | (blank) | | current | | | | | work | | | (blank) | | voltage | | | | | power | | | | | resistance | | | | | conductance | | | (blank) | #### Problem II: [15 pts] Basic Circuit Relationships Given the following circuit: and known values i_a , i_b , v_m , v_n , R_1 , R_2 , and R_3 , find the following quantities in terms of the known values: - (1) i_x - (2) v_{y} - (3) $p_{\mathrm{abs},v_{\mathrm{n}}}$ - (4) p_{del,R_1} - (5) p_{abs,R_3} - (6) $p_{\mathrm{del},i_{\mathrm{b}}}$ # Problem III: [30 pts] Node Voltage Method Given the following circuit: and known values v_s , b, R_1 , R_2 , R_3 , and R_4 , find v_y in terms of the known values using the Node Voltage Method. ## Problem IV: [30 pts] Mesh Current Method Given the following circuit: and known values i_s , g, R_1 , R_2 , R_3 , and R_4 , find $p_{{\rm abs},R_4}$ in terms of the known values using the Mesh Current Method. Hint: use the two simple-source equations first to get a single equation for the unknown current in the tallest mesh. # Problem V: [10 pts] Cramer's Rule Given the following set of three linear equations: $$x + 5y - 7z = 10$$ $$-8x - 2y + 3z = 11$$ $$6x + 9y - 4z = 12$$ (1) Write the system as a matrix equation (2) Set up, but do not solve, what you would need to do to find the value of the variable y