Buke University Edmund T. Pratt, Ir. School of Engineering

$\begin{array}{c} \hbox{EE 61 Section 2, Spring 2001} \\ \hbox{Test } I \end{array}$

Michael R. Gustafson II

Name (please print)	
In keeping with the Honor Code, I have neither provided nor received any assistance on to derstand if it is later determined that I gave or received assistance, I will fail the class and before the Undergraduate Judicial Board.	
Signature:	

Problem I: [15 pts] Element Table

Fill in the table below. For the **Equation** column, you can put any equation for the given variable in terms of other variables.

Name	Variable	Units	Equation
charge			(blank)
current			
work			(blank)
voltage			
power			
resistance			
conductance			(blank)

Problem II: [15 pts] Basic Circuit Relationships

Given the following circuit:

and known values i_a , i_b , v_m , v_n , R_1 , R_2 , and R_3 , find the following quantities in terms of the known values:

- (1) i_x
- (2) v_{y}
- (3) $p_{\mathrm{abs},v_{\mathrm{n}}}$
- (4) p_{del,R_1}
- (5) p_{abs,R_3}
- (6) $p_{\mathrm{del},i_{\mathrm{b}}}$

Problem III: [30 pts] Node Voltage Method

Given the following circuit:

and known values v_s , b, R_1 , R_2 , R_3 , and R_4 , find v_y in terms of the known values using the Node Voltage Method.

Problem IV: [30 pts] Mesh Current Method

Given the following circuit:

and known values i_s , g, R_1 , R_2 , R_3 , and R_4 , find $p_{{\rm abs},R_4}$ in terms of the known values using the Mesh Current Method. Hint: use the two simple-source equations first to get a single equation for the unknown current in the tallest mesh.

Problem V: [10 pts] Cramer's Rule

Given the following set of three linear equations:

$$x + 5y - 7z = 10$$
$$-8x - 2y + 3z = 11$$
$$6x + 9y - 4z = 12$$

(1) Write the system as a matrix equation

(2) Set up, but do not solve, what you would need to do to find the value of the variable y