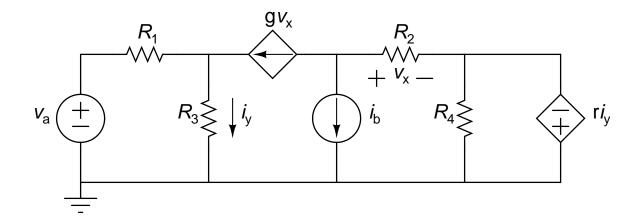
Duke Unibersity Fdmund T. Pratt, Jr. School of Engineering

$\stackrel{\mathrm{EE \ 61L \ Section \ 2, \ Fall \ 2001}}{\mathrm{Test \ II}}$

Michael R. Gustafson II

In	keeping	with	the	Honor	Code,	I have	$_{ m eithe}$	er provid	led nor	receiv	ed any	assis	stance	on	this	test.	Ιı	un-
$\mathrm{d}\epsilon$	erstand if	it is	later	determ	nined '	that I g	gave or	received	assista	ance, I	will fai	il the	${\it class}$	and	will	be b	rou	ght

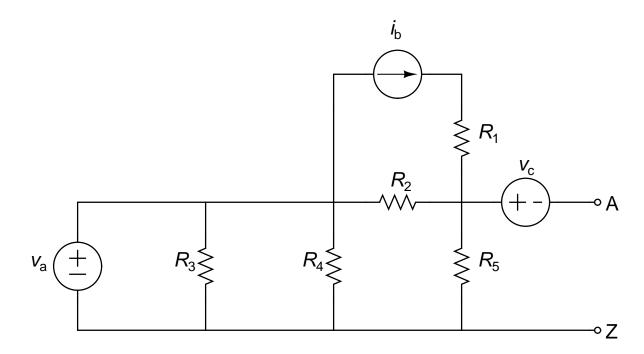

Signature:

Problem I: [25 pts.] Superposition

before the Undergraduate Judicial Board.

Name (please print)

Given the following circuit:

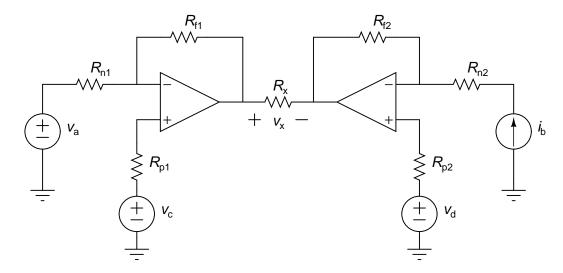


and known values r, g, R_1 , R_2 , R_3 , R_4 , v_a , and i_b , find p_{abs,R_4} using superposition. You must redraw the circuit each time to get full credit for this problem.

Name (please print): Honor Code (please initial):

Problem II: [20 pts.] Thévenin-Norton

Given the following circuit:

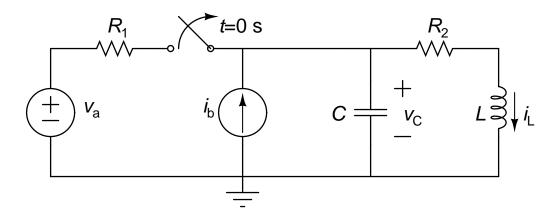


and known values R_1 , R_2 , R_3 , R_4 , R_5 , v_a , i_b , and v_c , determine and draw both the Thévenin and Norton equivalent circuits as seen at terminals A-Z.

Name (please print): Honor Code (please initial):

Problem III: [25 pts.] Operational Amplifiers

Given the following circuit:



and known values $R_{\rm n1}$, $R_{\rm f1}$, $R_{\rm p1}$, $R_{\rm n2}$, $R_{\rm f2}$, $R_{\rm p2}$, $R_{\rm x}$, $v_{\rm a}$, $i_{\rm b}$, $v_{\rm c}$, and $v_{\rm d}$, find $v_{\rm x}$ in terms of the known values. You may assume both operational amplifiers are ideal.

Name (please print): Honor Code (please initial):

Problem IV: [30 pts.] Inductors and Capacitors

Given the following circuit:

and known values R_1 , R_2 , L, C, v_a , and i_b ,

- (1) Assume that the two independent sources are constant and that this circuit has been in place for a very long time before t = 0 s. Determine the capacitor voltage $v_{\rm C}$ and inductor current $i_{\rm L}$ for time $t = 0^-$ s.
- (2) Determine the capacitor current $i_{\rm C}$ and inductor voltage $v_{\rm L}$ for time $t=0^+$ s. You may assume that the values of the state variables $v_{\rm C}(0^+)$ and $i_{\rm L}(0^+)$ are known, but *not* that the *derivatives* of the state variables are known.
- (3) Assume that the two independent sources are constant and that this circuit has been in place for a very long time after t=0 s. Determine the capacitor voltage $v_{\rm C}$ and inductor current $i_{\rm L}$ for time $t\to\infty$ s.
- (4) Find a differential equation for $i_{\rm L}$ in terms of the known values for t>0 s. If done correctly, you will end up with a second order differential equation. Hint: use $v_{\rm C}$ and $i_{\rm L}$ as your only unknowns to develop two equations for the circuit, then substitute one into the other to get a single equation with $i_{\rm L}$ and its derivatives.