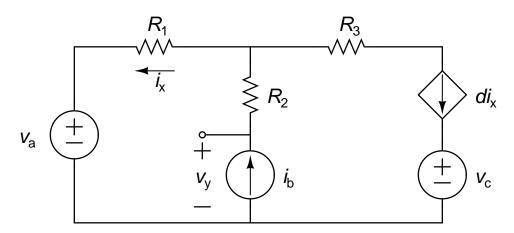
Buke University Edmund T. Pratt, Ir. School of Engineering

$\begin{array}{c} \hbox{EE 61L Section 2, Fall 2001} \\ \hbox{Test I} \end{array}$

Michael R. Gustafson II

Name (please print)
In keeping with the Honor Code, I have neither provided nor received any assistance on this test. I understand if it is later determined that I gave or received assistance, I will fail the class and will be brough before the Undergraduate Judicial Board.
Signature:

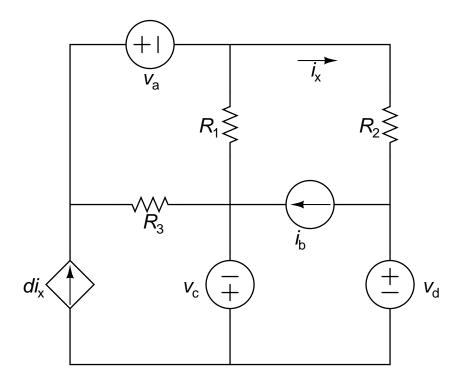

Problem I: [15 pts] Element Table

Fill in the table below. For the **Equation** column, you can put any equation for the given variable in terms of other variables except you may only use Ohm's Law **once**.

Name	Variable	Units	Equation
charge			(blank)
current			
work			(blank)
voltage			
power			
resistance			
conductance			(blank)

Problem II: [15 pts] Basic Circuit Relationships

Given the following circuit:

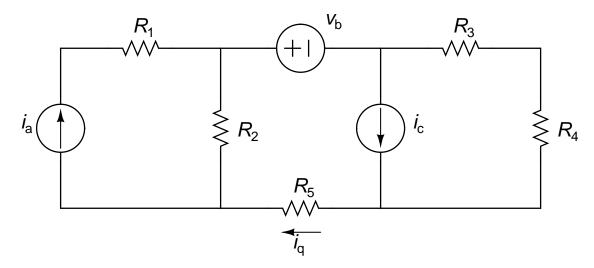

and known values v_a , i_b , v_c , d, R_1 , R_2 , and R_3 , find the following quantities in terms of the known values:

- (1) i_x
- (2) v_{y}
- (3) p_{abs,R_2}
- (4) $p_{\mathrm{del},i_{\mathrm{b}}}$
- (5) $p_{abs,CCCS}$

Name (please print): Honor Code (please initial):

Problem III: [30 pts] Node Voltage Method

Given the following circuit:



and known values $v_{\rm a},\,i_{\rm b},\,v_{\rm c},\,v_{\rm d},\,d,\,R_1,\,R_2,$ and $R_3,$ find $i_{\rm x}$ in terms of the known values using the Node Voltage Method.

Name (please print): Honor Code (please initial):

Problem IV: [30 pts] Current Methods

Given the following circuit:

and known values i_a , v_b , i_c , R_1 , R_2 , R_3 , R_4 , and R_5 , find i_q and p_{del,i_c} in terms of the known values using either the Mesh Current Method or the Branch Current Method.

Name (please print): Honor Code (please initial):

Problem V: [10 pts] Cramer's Rule

Given the following set of three linear equations:

$$y + 2z = 2$$
$$2x - y = 1$$
$$3x - 2y + 3z = 2$$

(1) Write the system as a matrix equation.

(2) Use Cramer's Rule to solve for y. Be sure to show your work.