Donute different time scale origin (a) periodir, components are periodir W/ frequencies 9=3 so 6 and 12, 40=6 T= T/3 (b) periodic i composet are periodic W/ frequencies 3TT and 9TT Wo=3TT T= 3/3 (() Not periodic; 911/3 not rational (5) Melt) is periodic, so not energy; T= 2TT Pos=1(2TT (1+Sin(+1))2 dt 2TT) 0 always hon-negative =1(?# (sin?(+) +2 sin(+) +1) dt =1(2TT 1-(05(2+) + 2 sin(+) + 1 d+ - (1) (t - sin(44) + 2 (05(4) + t) 2TT $= \left(\frac{1}{2}\pi\right)\left(\frac{3}{2}\right)\left(\frac{3}{2}\right)$ (1+) = e = 2+ u(+) try Ew: Es= (b | e = t (1+) | d = (b e (1+) dt = (be (4+)) - (b e (4+)) = 1/1 | Energy | 1,1 | 1/4 | Energy | | |----------------|-------------------|--|--| | m(t)=
twice | - 2/t1:
the ar | = e u(t) + e u(-t) eu under + be square of l(t) su E rergy | | | | 7 | | | | | | | | | | | | | | | | | | | Problem 2
Monday, June 5, 2017 | 2:55 PM | | | | | |-----------------------------------|------------------|---------------|---------------|---------------|-------------| | Sus | L | TI | S | M | _ | | X5(4) | \mathcal{N} | Y | Y | У | Y | | x(1 ²) | Y | \mathcal{N} | Y | \sim | N | | (xin) dr | 7 | \mathcal{N} | \sim | \sim | \sim | | X(+) X(+1) | Y | Y | Y | \mathcal{N} | > | | atan(x(t)) | \mathcal{N} | Y | Y | Y | Y | | | | | | | | | Sys
Fun | h | 5 | \mathcal{N} | | | | h=e ^{-1t1} | e ItI | Y | \sim | N | | | 1 u(+) | 1-4(+) | \mathcal{N} | N | Y | | | S=tuH) | h=u(+) | \mathcal{N} | \sim | У | | | 5,=2u(+) | h=28(+) | Y | Y | Y | | | | | | | · | | | | | | | | | (6) Since $$h_2|t| = h_1(t-1)$$, $y_2|t| = y_1|t-1)$ $$= u(t)(-e^{t}+1) - u(t-1)(-e^{t}+e^{t})$$ (7) $X(t) = e^{t}(u(t) - u(t-1)) \quad h_3(t) = e^{t}u(t)$ $$y_3|t| = \int_{\infty}^{\infty} e^{t}(u(\tau) - u(\tau-1)) e^{(t-\tau)} u(t-\tau) d\tau$$ $$= e^{t}(\int_{\infty}^{\infty} u(\tau) u(t-\tau) d\tau - \int_{\infty}^{\infty} u(\tau-1) u(t-\tau) d\tau$$ $$= e^{t}(u(t)(t) d\tau - u(t-1)(t)$$ $$= e^{t}(u(t)(t-0) - u(t-1)(t-1))$$ $$= e^{t}(u(t)(t-0) - u(t-1)(t-1))$$ Mote: This ends up as a second range: a decaying exponential $$= e^{t}(u(t)(t-1) u(t-1) u(t-1)$$