Problem 1
Monday, November 15, 2021
1)

$$
\begin{aligned}
& w(t)=2+3 \cos (9 t) \cdot \sin (4 t)=2+\frac{3}{2}(\sin (-5 t)+\sin (13 t)) \\
& w_{0}=1 \quad w[k]=\left\{\left.\begin{array}{ll}
k=13 & 3 / 4 j j \\
k=5 & -3 / 4 j \\
k=0 & 2 \\
k=-5 & 3 / j j \\
k=-13 & -3 / 4 j
\end{array} \right\rvert\,\right.
\end{aligned}
$$

2) $T=2 \quad w_{0}=\frac{2 \pi}{T}=\pi$

$$
x(t)=6 \cos (5 \pi t)-4 \sin (5 \pi t)-8 \cos (3 \pi t)+10 \sin (3 \pi t)+71
$$

3) $H(j w)=10(u(w+11)-u(w-11)) \sim L P F, w_{c 0}=11 ; \quad 3 \pi<11,5 \pi>11$, so

$$
y(t)=-80 \cos (3 \pi t)+100 \sin (3 \pi t)+701
$$

$$
T=5 \quad \omega_{0}=\frac{2 \pi}{5}
$$

ot 1:

Problem 2

1) a) $e^{-3 t} u(t-1)=e^{-3(t-1+1)} u(t-1)=e^{-3} e^{-3(t-1)} u(t-1) \rightarrow \frac{e^{-3} e^{-j \omega}}{j \omega+3}$
b) $4 e^{-5 t}(\cos (6 t)+\sin (7 t)) u(t) \rightarrow \frac{4(j \omega+5)}{(j \omega+5)^{2}+(6)^{2}}+\frac{4(7)}{(j \omega+5)^{2}+(7)^{2}}$
c) $2 r(t+1)-2 r(t)-u(t-1)-u(t-3)$ FINITE DURATION, SO

$$
C(j \omega)=\frac{\partial e^{j \omega}}{(j \omega)^{2}}-\frac{\partial}{\left(j^{2}\right)^{2}}-\frac{e^{-j \psi}}{j \omega}-\frac{e^{-j \hbar \psi}}{j \omega}
$$

d) $3 u(t-2)-3 u(t)+3 e^{-2 t} u(t) \quad$ FINITE DURATION FOR PULSE, SO

$$
D(j w)=\frac{3}{j w} e^{j w}-\frac{3}{j w}+\frac{3}{j w+2}
$$

2 w) $\frac{1-e^{-3 j L}}{j \omega+y}=e^{-4 t} u(t)-e^{-4(t-3)} u(t-3)$

$$
\left.x(t)=-30 e^{-t} u(t)+90 e^{-3 t} u(t)\right)
$$

y) $4^{2}-4 \cdot 4=0 \rightarrow \frac{60 j \omega}{(j \omega+2)^{2}}=\frac{A}{(j \omega+2)^{2}}+\frac{B}{(j \omega+2)}=\frac{A+B(j \omega+2)}{(j \omega+2)^{2}}$
$A=\lim _{j v t-2} 60 j \omega=-120 \quad B=60$ from $60 j \omega=B j \omega$

$$
y(t)=-120 t e^{-2 t} u(t)+60 e^{-2 t} u(t)
$$

alt: $q=\mathcal{F}^{-1}\left\{\frac{1}{(j v+2)^{2}}\right\} \quad q=t e^{-2 t} u(t)$

$$
y=60 \frac{d y}{d t}=60 e^{-2 t} u(t)-120 t e^{-2 t} u(t)+60 t e^{-3 t}(t)
$$

2) $4^{2}-4.5<0 \rightarrow \frac{60 j w}{(j w+2)^{2}+(1)^{2}}=\frac{A(j w+2)+B(1)}{(j w+2)^{2}+(11)^{2}}$
$A=60$ From jus, $2 A+B=0 \quad B=-120$ From $(j v)^{\circ}$

$$
\left.z(t)=e^{-2 t}(60 \cos (t)-120 \sin (t)) u(t)\right]
$$

Problem 3

1) $\int_{-\infty}^{\infty}|h(t)| d t<\infty$ yes
2) $h(t)=0, t<0$ yes
3) $H(j v)=\frac{1}{j \omega+2}$
4) opt. 1: $s_{i} \int_{-\infty}^{t} h(\tau) d \tau$ $=\int_{-\infty}^{t} e^{-\infty} e^{-2 \tau}(\tau) d \tau$
$=u(t) \int_{0}^{t} e^{-2 r} d$
$=u(t)\left[\frac{e^{-\tau}}{-z}\right]_{0}^{t}=u(t)\left(\frac{1-e^{-z t}}{2}\right)$
opt 2: $S_{r}(j u)=\frac{H(v)}{j^{2}}=\frac{1}{j u(j \omega+2)}$

$$
=\frac{A}{j w}+\frac{B}{j w+2}
$$

$A=\lim _{j v \rightarrow 0} \frac{1}{j w+2}=\frac{1}{2} \quad B=\lim _{j w+-2} \frac{1}{j w}=-\frac{1}{2}$
$S_{r}(t)=\frac{1}{2} u(t)-\frac{1}{2} e^{-z t} u(t)$
5) $x_{1}(t)=1+2 \cos (2 t) \quad w_{0}=2 \quad x[k]=\left\{\begin{array}{l}k=+1 \\ k=0 \\ k=-1\end{array}\right.$
(Pynsors: $\quad w=0 \quad x=1 \quad H=1 / 2 \quad y=1 / 2 \quad y=1 / 2$

$$
\left.\omega=2 \quad X=260^{\circ} \quad \mathbb{H}=\frac{\sqrt{2}}{4} L 45^{\circ} Y=\frac{\sqrt{2}}{2} L-15^{\circ} \quad y=\frac{\sqrt{2}}{2} \cos \left(2 t-45^{\circ}\right)\right]
$$

6) $X_{2}(j \omega)=\frac{1}{j v+2} \quad Y_{2}(j v)=\frac{1}{(j v+2)^{2}} \quad y_{2}(t)=t e^{-2 t} u(t)$

$$
y_{3}(t)=e^{-i t} u(t)-e^{-3 t} u(t)
$$

8) $\quad \begin{array}{ll}\frac{Y}{x}=\frac{1}{j w+2} & \begin{array}{ll}(j w+2) y=x \\ & \frac{d y}{d t}+2 y=x\end{array}\end{array}$

$$
\begin{aligned}
& H(; 0)=\frac{1}{2} \quad H(j z)=\frac{1}{j+2}=\frac{2-j 2}{8}=\frac{2 \sqrt{2}}{8}<-45^{\circ} \quad H(-j c)=H^{x}(j 2)=\frac{2+j 2}{8}=\frac{2 \sqrt{2} /+45^{\circ}}{8} \\
& Y_{1}[k]=\left\{\begin{array}{lll}
k=1 & \frac{1}{4}-\frac{\pi}{4}= & \frac{\pi}{4} \\
k=0 & 1 / 45^{\circ} \\
k=-1 & t+\frac{2}{7} & \frac{\pi}{4}
\end{array}<45^{\circ} \quad y_{(}(t)=\frac{1}{2} \cos (2 t)+\frac{1}{2} \sin (2 t)+\frac{1}{2}\right]
\end{aligned}
$$

Problem 4

1) $W(t)$ BAND-LMITED At 200 rads $x(t)$ NOT BAND-LMITED $y(t)$ BAND-LIMIEO TO $150 \mathrm{rad} / \mathrm{s}$

$$
X(j \omega)=\frac{2 \frac{2 i n}{\omega}(0.05 w)}{\omega}
$$

3) d) $W \cdot X$ band limited to 200 rall W.Y bund limited to 100 rals $X \cdot Y$ band limited to 150 rolls

b)

c) $w_{s}>2 w_{M}$ so $>400 \mathrm{rad} / \mathrm{s}$ and thus $T_{S}<\frac{\pi}{200}$
d) $\quad w_{M}<w_{c o}<w_{s}-w_{M}$
e)

$$
\sin (100 t)+\cos (200 t)
$$

h)

$\sin (100 t)$

Problem 5

Asynchronens Demod or ENVELUPE DETECTION

Synchronons DEMOD.

DSB-SC MOD.

(Fucl) AM

NO: FDM , FM , OR TURBDENCABUATIUN!

