ACE 280 Test 1
Monday, October 11, 2021
1)

$$
x(t)=u(t+3)-u(t+2)-0.5 r(t-2)+2 u(t)+0.5 r(t)-u(t-3)
$$

2) ENERGY (BOUNDED \& FINITE DURATDN)

$$
\begin{aligned}
& E(-3,-2)=H^{2} W=(1)^{2}(1)=1 \\
& E(-2,0)=\frac{H^{2} W}{3}=\frac{(1)^{2}(2)}{3}=\frac{2}{3} \\
& E(0,3)=H^{2} W=(1)^{2}(3)=3
\end{aligned} \quad E=1+\frac{2}{3}+3=4 \frac{2}{3}=\frac{14}{3}
$$

4) $4 \times(-3 t+6)+1=4 \times(-3(t-2))+1$ vertical expansion time rev/contraction time shift vertical shift

Problem 2
(a)

$$
\begin{aligned}
& \cos (6 \pi t)+\sin (12 \pi t)+\cos \left(15 \pi t+12^{\circ}\right) \\
& \omega=6 \pi, 12 \pi, 15 \pi \quad G C F=3 \pi, T=\frac{2 \pi}{3 \pi}=\frac{2}{3} \\
& =2
\end{aligned}
$$

Periodic
b) $\sin (7 t) \cdot \cos (17 t)$ means $\omega=17 \pm 7=10,24$ comME NSURABLE; PERNODC

$$
G C F=2, T=\frac{2 \pi}{2}=\pi
$$

c) $\cos (7 t) \cdot \cos (9 t)$ means $\omega=9 \pm 7=2,16$ ALSO $\omega=11$ COMMENSUNABLE PERRIOOK $G\left(F=1 \quad T=\frac{2 \pi}{1}=2 \pi\right.$
2k)

$$
\begin{aligned}
& \text { ENECC } y=\frac{1}{3}(1)^{2}(1)+\frac{1}{3}(1)^{2}(1)=\frac{2}{3} \\
& T / 2|l(t)|^{2} d t
\end{aligned}
$$

l) PERUOLC L BDUNDED \rightarrow PERIOAC

$$
P_{\infty}=\frac{1}{T} \int_{-T / 2}^{T / 2}|Q(t)|^{2} d t=\frac{1}{T} E_{\text {areeral }}=\frac{2 / 3}{5}=\frac{2}{15}
$$

m)

WFIMTE DURATIN, DDES NOT DECAY \rightarrow NOT ENERCY
PMER?

$$
\begin{aligned}
& ? \lim _{T \rightarrow \infty} \frac{1}{T}\left(\int_{-1 / 2}^{T / 2} \operatorname{lm}(t)\right)^{2} d t \\
& \lim _{T \rightarrow \infty} \frac{1}{T}\left[\int_{0}^{T /\left(1-2 e^{-t}+e^{-2 t}\right) d t}\right. \\
& \lim _{1 \rightarrow \infty} \frac{1}{T}\left[t-\frac{2 e^{-t}}{-1}+\frac{e^{-2 t}}{-2}\right]_{0}^{T / 2} \\
& \lim _{T \rightarrow \infty} \frac{1}{T}\left[\frac{1}{2}+2 e^{-7 / 2}-2 e^{-70}-0-2 e^{-0}+2 e^{-0}\right] \\
& =\frac{1}{2} \square
\end{aligned}
$$

Problem 3

1. For the following system equations, determine if the system represented is linear, time-invariant, stable, memoryless, and/or causal. You may show any work on an additional piece of paper, but clearly indicate which system and system property you are working with.

2. Assuming the following systems are each linear and time invariant, determine if the system represented is stable, memoryless, and/or causal based on the impulse response $h_{i}(t)$ or the step response $s_{\mathrm{r}, \mathrm{i}}(t)$. You may show any work on an additional piece of paper, but clearly indicate which system and system property you are working with.

1) $\int_{-\infty}^{\infty}\left|\left(1-e^{-t}\right) u(t)\right| d t=\int_{0}^{\infty}\left(1-e^{-t}\right) d t=\left[t+e^{-t}\right]_{0}^{\infty}=\underset{\equiv}{\infty}+0-(0+1)$
2) $\left.h_{r, 3}=\frac{d s_{a t}}{d t}=e^{-t} u(t) \quad \int_{-\infty}^{\infty}\left|e^{-t} u(t)\right| d t=\int_{0}^{\infty} e^{-t} d t=-e^{-t}\right]_{0}^{\infty}=0--1=1$
3) $\begin{aligned} h_{r, 4}=\frac{d s_{1, t}}{d t}=\frac{d}{d t}(\sin (t) u(t))= & =\cos (t) u(t)+\sin (t) \\ 0 & \int_{-\infty}^{\infty}|\cos (t) u(t)| d t\end{aligned}=\int_{0}^{\infty}|\cos (t)| d t$

Problem 4

1) $x(t) * y(t)=\int_{-\infty}^{\infty} x(\tau) y(t-\tau) d \tau$ OR $\int_{-\infty}^{\infty} x(t-\tau) y(\tau) d \tau$
2) $r_{x y}(t)=\int_{-\infty}^{\infty} x(\tau) y(t+\tau) d \tau$ or $\int_{-\infty}^{\infty} x(\gamma-t) y(\gamma) d y$
3)

$A=(u(t-1)-r(t)+r(t-1)) x(u(t+1)-r(t)+r(t-1))=$

$$
r(t+2)-q(t+1)+q(t)
$$

$$
-q(t+1)+c(t)-c(t-1)=r(t+r)-2 q(t+1)+c(t)-2 q(t)-2 c(t-1)+c(t-2)
$$

$$
+q(t)-c(t-1)+c(t-2)
$$

$B=(u(t+1)-r(t)+r(t-1) *(u(t+1)-u(t-2))$

$$
r(t+2)-r(t-1)-q(t+1)+q(t-2)+q(t)-q(t-3)
$$

$C=x_{m}(t) * x(t)=(r(t+1)-r(t)-u(t-1)) *(u(t+1)-r(t)+r(t-1))$
$q(t+2)-c(t+1)+c(t)$
$D=r_{y y}(t)=y_{m}(t) \times y(t)=(u(t+2)-u(t-1)) *(u(t+1)-u(t-2))$
$=r(t+3)-r(t)-r(t)+r(t-3)=r(t+3)-2 r(t)+r(t+3)$
$E=X_{m}(t) * y(t)=(r(t+1)-r(t)-u(t-1)) X(u(t+1)-u(t-2))$

$$
q(t+2)-q(t-1)-q(t+1)+q(t-2)-r(t)+r(t-3)
$$

$M O C_{x y}=\frac{\left(r_{x y / \text { max }}\right)^{2}}{\left.\sigma_{x x}(0) r_{x y} \mid 0\right)} \leftarrow$ Max Anta of Provert witen x fully witung is $D=1+\frac{1}{2}-\frac{3}{2}$

$$
\begin{aligned}
& \left.\int_{\text {NSRRG IN } \left.x=H^{2} w+\frac{H^{2} w}{3}=(1)^{2}(1)+\frac{(1)^{2}(n)}{3}=\frac{4}{3}\right)}^{\sigma_{x}(0) r x \mid(0)} \quad M O C=\frac{\left(\frac{3}{2}\right)^{2}}{\left(\frac{4}{3}\right)(3)}=\frac{\left(\frac{9}{1}\right)}{\left(\frac{4}{1}\right)^{2}}=\frac{9}{16} \right\rvert\, \\
& \text { ENERGI } y=H^{2} w=(1)^{2}(3)=3
\end{aligned}
$$

Problem 5
1)
$h(t)$

2) YES $\int_{-\infty}^{\infty}|h(t)| d t=4$ Finite
3) YES $\quad h(t)=0$ All $t<0$
4) $\quad(u(t)-3 u(t-2)+2 u(t-3)) * u(t)=r(t)-3 r(t-2)+2 r(t-3)$

OR: $\int_{-\infty}^{t} h(\tau) d \tau=\int_{-\infty}^{t}(u(\tau)-3 u(\tau-\tau)+2 u(\tau-3)) d \tau$

$$
\begin{aligned}
& u(t) \int_{0}^{t} d \tau-3 u(t-2) \int_{2}^{t} d \tau+2 u(t-3) \int_{3}^{t} d \tau \\
& =t u(t)-3(t-2) u(t-2)+2(t-3) u(t-3)-
\end{aligned}
$$

5)

$$
\begin{aligned}
y_{1} & =h(t) * x_{1}(t) \\
& =(u(t)-3 u(t-2)+2(t-3)) *(u(t)-u(t-2) \\
& =r(t)-r(t-2)-3 r(t-2)+3 r(t-4)+2 r(t-3)-2 r(t-s) \\
\text { or } y_{1}(t) & =s_{r}(t)-s_{r}(t-2) \\
& =r(t)-3 r(t-2)+2 r(t-3)-(r(t-2)-3 r(t-4)+2 r(t-s))
\end{aligned}
$$

6)

$$
\begin{aligned}
y_{2} & =h(t) * x_{2}(t) \\
& =(u(t)-3 u(t-2)+2 n(t-3)) *\left(e^{-t} u(t)\right) \\
& =u(t) * e^{-t} u(t)-3 u(t-2) * e^{-t} u(t)+2 u(t-3) * e^{-t} u(t) \\
u(t) * e^{-t} u(t) & =\int_{-\infty}^{\infty} u(t-\tau) e^{-\tau} u(\tau) d \tau \\
\tau<t & \tau>0 \quad 0<\tau<t \\
& u(t) \int_{0}^{t} e^{-\tau} u(\tau) d \tau=u(t)\left[-e^{-\tau}\right]_{0}^{t}=u(t)\left(-e^{-t}+1\right)=\left(1-e^{-t}\right) u(t)
\end{aligned}
$$

The other two terms are scaled, shiftedversions of this;

$$
y_{2}=\left(1-e^{-t}\right) u(t)-3\left(1-e^{-(t-2)} u(t-2)\right)+2\left(1-e^{-(t-3)}\right) u(t-3)
$$

Problem 3 - extra

1. For the following system equations, determine if the system represented is linear, time-invariant, stable, memoryless, and/or causal. You may show any work on an additional piece of paper, but clearly indicate which

2. Assuming the following systems are each linear and time invariant, determine if the system represented is stable, memory less, and/or causal based on the impulse response $h_{i}(t)$ or the step response $s_{\mathrm{r}, \mathrm{i}}(t)$. You may
show any work on an additional piece of paper, but clearly indicate which system and system property you are working with.

a) $x(t)$ in denom - nonlinear, $x(t)=-2 * y(t)=\infty$ - unstable
b) $g(t)$ depends on past - memory
c) $y(t)$ defends on $x(t-2)$ to $x(t)$ once limits go in; causal but w/nemory
d) cos ct f outside args of x or $~ g$ - Time varying, $x(2 t)$ in future if $t<0$ non-culsal, memory
e) additive element - nonlinear; cos(it) , outside of args of xory - time varying
