ECE 141L - Spring 2008

Test II Review

1 Chapter III

- (a) Set up state space for electrical, mechanical, and hybrid systems.
- (b) Set up phase space from a transfer function.

2 Chapter IV

- (a) Determine characteristics of the step response for a first-order system or design a system to achieve those characteristics.
- (b) Determine the characteristics of the step response for a second-order system or design a system to achieve those characteristics.
- (c) Know when extra poles and zeros interfere with the assumptions of a dominant pair of poles.

3 Chapter V

- (a) Translate a block diagram into a signal flow graph.
- (b) Determine the transfer function of a signal flow graph.

4 Chapter VI

- (a) Generate a Routh array for a transfer function and determine regions of stability (by hand). Be sure to know how to handle rows with all zeros and rows with leading zeros.
- (b) Find the value of one or more free parameters to obtain marginal stability and the frequency of oscillation for marginal stability.

5 Chapter VII

- (a) Find system type, static error constants, and steady state error for unity feedback systems.
- (b) Determine equivalent forward transfer function for systems not fitting the unity feedback paradigm, and find system type, static error constants, and steady state error for those systems.
- (c) Design a system satisfying both stability and error considerations.

6 Computational Tools

- (a) MATLAB: Determine step response characteristics for a system using the step command.
- (b) MATLAB: Use tf and zpk functions to set up transfer functions.
- (c) MATLAB: Use parallel and feedback functions along with algebra to generate transfer functions of cascade, parallel, feedback, and more complex systems.
- (d) MATLAB: convert between polynomial ratio and zero-pole-gain representations of transfer functions.
- (e) MATLAB: Model a system using Simulink and make a plot of the input and output of the system.
- (f) MATLAB: Model a system using the lsim command and determine steady-state error graphically.
- (g) MAPLE: Solve and simplify transfer functions.
- (h) MAPLE: Generate and translate a Routh array.