Auke University Edmund T. Pratt, Jr. School of Engineering

ECE 141 Spring 2007 Test I Michael R. Gustafson II

Name (please print)
In keeping with the Community Standard, I have neither provided nor received any assistance on this
test. I understand if it is later determined that I gave or received assistance, I will be brought before the
Undergraduate Judicial Board and, if found responsible for academic dishonesty or academic contempt, fail
the class. I also understand that I am not allowed to speak to anyone except the instructor about any aspect
of this test until the instructor announces it is allowed. I understand if it is later determined that I did
speak to another person about the test before the instructor said it was allowed, I will be brought before the

Undergraduate Judicial Board and, if found responsible for academic dishonesty or academic contempt, fail

Signature:

Problem I: [20 pts.] Solving Differential Equations

the class.

Using Laplace Transforms and clearly showing your work, determine an equation for x(t) given the following:

$$\frac{d^2x(t)}{dt^2} + 8\frac{dx(t)}{dt} + 41x(t) = (2t - 2)u(t)$$
$$\dot{x}(0) = -1$$
$$x(0) = 3$$

Note: not all numbers are necessarily nice. u(t) is the unit step function.

Problem II: [20 pts.] Translational Systems

Given the system below,

set up, but do not solve, a system of equations that could be used to find a transfer function between the position of anything in the system and the force applied to M_4 . Your answer should be presented in matrix form, and you must clearly indicate what your variables mean.

Problem III: [20 pts.] Rotational Systems

Given the system below:

set up, but do not solve, a system of equations that could be used to find a transfer function between the angular position of anything in the system and the torque applied to $J_{\rm a}$. Your answer should be presented in matrix form, and you must clearly indicate what your variables mean.

Problem IV: [20 pts.] Motorized Systems

Given the system below:

- (a) Draw the equivalent system as seen by the motor, and
- (b) Determine the value of the transfer function $G(s) = \Theta_{\rm d}(s)/E_{\rm a}(s)$. Assume that $K_{\rm t}$, $K_{\rm b}$, and $R_{\rm a}$ are known.

Problem V: [20 pts.] Electrical Systems

Given the circuit below:

set up, but do not solve, a system of equations that could be used to find a transfer function between the output current and the input voltage. Your answer should be presented in matrix form, and you must clearly indicate what your variables mean.