相uke Zluthersitg
 Tixmund T. 彐latt, Jr. Sithool of Tingintering

ECE 141 Spring 2006
\qquad
Name (please print)
In keeping with the Community Standard, I have neither provided nor received any assistance on this test. I understand if it is later determined that I gave or received assistance, I will be brought before the Undergraduate Judicial Board and, if found responsible for academic dishonesty or academic contempt, fail the class. I also understand that I am not allowed to speak to anyone except the instructor about any aspect of this test until the instructor announces it is allowed. I understand if it is later determined that I did speak to another person about the test before the instructor said it was allowed, I will be brought before the Undergraduate Judicial Board and, if found responsible for academic dishonesty or academic contempt, fail the class.

Signature

Problem I: [10 pts.] Pole Location

Use a Routh table to determine how many poles of the following system $T(s)$ are in the left-half plane, how many are in the right-half plane, and how many are on the $j \omega$ axis. Briefly explain how you determined your answer. Note: merely solving for the roots and stating where they are will give you no credit.

$$
T(s)=\frac{C(s)}{R(s)}=\frac{s^{2}+3 s+2}{s^{7}+2 s^{6}-2 s^{5}+2 s^{4}+6 s^{2}-9 s}
$$

Name (please print):
Community Standard (print ACPUB ID):

Problem II: [15 pts.] State Variables

Given the circuit below,

Assuming the voltage source $v(t)$ is the input and the current through the capacitor $i_{C}(t)$ is the output, write the system using a state equation. Be sure to indicate what your states are and present the final answer in matrix form.

Name (please print):
Community Standard (print ACPUB ID):

Problem III: [20 pts.] Signal Flow and Mason's Rule

Given the signal flow diagram below:

use Mason's rule (showing your work clearly) to determine the transfer function

$$
T(s)=\frac{C(s)}{R(s)}
$$

Do not multiply terms out (please!).

Name (please print):
Community Standard (print ACPUB ID):

Problem IV: [25 pts.] Stability

A standard negative feedback system has the following parameters:

$$
G(s)=\frac{1}{s^{4}+4 s^{3}+3 s^{2}+4 s+4} \quad H(s)=K_{1} s^{2}+K_{2}
$$

(a) Determine the values of K_{1} and K_{2} for which the system will be stable. Note: one of the equations will require both variables.
(b) On the graph below, shade in the area that describes values of K_{1} and K_{2} that would present a stable system. Note that the borders of this area will represent some form of marginal stability.
(c) Assuming that $K_{1}=0$, determine the value of K_{2} that will cause marginal stability for a non-trivial system, then determine the frequency of oscillation for that value of K_{2}.
(d) Assuming that $K_{2}=0$, determine the value of K_{1} that will cause marginal stability for a non-trivial system, then determine the frequency of oscillation for that value of K_{1}.

Name (please print):
Community Standard (print ACPUB ID):

Problem V: [30 pts.] Electromechanical Systems

Given the system below (represented both as a model and a block diagram):

Assuming $K_{t} / R_{a}=8, K_{b}=0.125, J_{a}=1, J_{1}=1, J_{2}=200, N_{1}=1, N_{2}=10, D_{a}=3$:
(a) Determine the following transfer functions:
(1) Motor: $G_{1}(s)=\frac{\Theta_{M}(s)}{E_{a}(s)}$
(2) Gears: $G_{2}(s)=\frac{\Theta_{2}(s)}{\Theta_{M}(s)}$
(3) Potentiometer: $H(s)=\frac{V_{p}(s)}{\Theta_{2}(s)}$
(b) Determine the overall transfer function, $T(s)=\frac{C(s)}{R(s)}$.
(c) Determine the values of buffer gain K that will yield a stable system.
(d) Assuming $r(t)=u(t) \mathrm{V}$ and $K=1$, determine the settling time, rise time, natural frequency, damping ratio, and $\% \mathrm{OS}$ for the output.
(e) Assuming you want a 10% OS, what value of K should be used?

