Auke University Fdmund T. Pratt, Ir. School of Engineering

ECE 141 Spring 2005 Test I Michael R. Gustafson II

N.T.	/ 1	• 1)	
Name (please 1	nrint	
ramic (picasc	DIIII (

In keeping with the Community Standard, I have neither provided nor received any assistance on this test. I understand if it is later determined that I gave or received assistance, I will be brought before the Undergraduate Judicial Board and, if found responsible for academic dishonesty or academic contempt, fail the class. I also understand that I am not allowed to speak to anyone except the instructor about any aspect of this test until the instructor announces it is allowed. I understand if it is later determined that I did speak to another person about the test before the instructor said it was allowed, I will be brought before the Undergraduate Judicial Board and, if found responsible for academic dishonesty or academic contempt, fail the class.

Signature:

Problem I: [15 pts.] Second-Order Systems

Given the circuit below:

with C=1/9 F, L=1 H, and $i_{in}(t)=u(t)$ A:

- (1) Determine the value of R that represents a critically damped system (call this R_{crit}).
- (2) Assuming $R = .6R_{crit}$, determine the natural frequency ω_n , the damping ratio ζ , the damped frequency ω_d , the rise time T_r , the peak time T_p , the settling time T_s , and the percent overshoot %OS for $i_{out}(t)$.

Problem II: [20 pts.] Rotational Transfer Functions

Given the system below,

with

and the knowledge that the relationship of the motor torque to motor speed is:

$$T_m = 750 \text{N-m} - (25 \text{N-m s/rad}) \omega_m$$

when $e_a=10V$, determine the transfer function:

$$G(s) = \frac{\Theta_m(s)}{E_a(s)}$$

Problem III: [20 pts.] Translational Transfer Functions and State Space

Given the translational system below:

- (1) Determine the transfer function $G(s) = X_2(s)/F(s)$. You need to solve for $X_2(s)/F(s)$ but you do not need to multiply things out.
- (2) Determine the state space representation of the system if the input is f(t) and the output is $x_1(t)$. Be sure to clearly define all parts of the state space.

Name (please print): Community Standard (print ACPUB ID):

Problem IV: [15 pts.] Mason's Rule

Determine the transfer function T(s) = C(s)/R(s) given the following signal flow graph:

Problem V: [30 pts.] Block Diagrams and Stability

Given the block diagram below:

- (1) Assuming H=0, determine the overall transfer function, $T_{eq}(s)=C(s)/R(s)$.
- (2) Assuming H=0 and K=12, determine the output c(t) when the input r(t) is a unit step function.
- (3) Assuming $H = \frac{s}{s+1}$, determine the values of K that produce a stable system.
- (4) Assuming $H = \frac{s}{s+1}$, determine the values of K that produce a marginally stable system, and state the corresponding frequencies of oscillation.