目uthe ${ }^{(1)}$
Fixnumid © Alratt, Jix. Sithool of Tingineering
ECE 141 Spring 2005
Test I
Michael R. Gustafson II

Abstract

Name (please print) \qquad In keeping with the Community Standard, I have neither provided nor received any assistance on this test. I understand if it is later determined that I gave or received assistance, I will be brought before the Undergraduate Judicial Board and, if found responsible for academic dishonesty or academic contempt, fail the class. I also understand that I am not allowed to speak to anyone except the instructor about any aspect of this test until the instructor announces it is allowed. I understand if it is later determined that I did speak to another person about the test before the instructor said it was allowed, I will be brought before the Undergraduate Judicial Board and, if found responsible for academic dishonesty or academic contempt, fail the class.

Signature \qquad

Problem I: [15 pts.] Second-Order Systems

Given the circuit below:

with $C=1 / 9 \mathrm{~F}, L=1 \mathrm{H}$, and $i_{i n}(t)=u(t) \mathrm{A}$:
(1) Determine the value of R that represents a critically damped system (call this $R_{\text {crit }}$).
(2) Assuming $R=.6 R_{\text {crit }}$, determine the natural frequency ω_{n}, the damping ratio ζ, the damped frequency ω_{d}, the rise time T_{r}, the peak time T_{p}, the settling time T_{s}, and the percent overshoot $\% O S$ for $i_{\text {out }}(t)$.

Name (please print):
Community Standard (print ACPUB ID):

Problem II: [20 pts.] Rotational Transfer Functions

Given the system below,

with

$$
\left.\begin{array}{rlrlrl}
J_{a} & =1 \mathrm{~kg}-\mathrm{m}^{2} & J_{t} & =400 \mathrm{~kg}-\mathrm{m}^{2} & J_{c} & =40 \mathrm{~kg}-\mathrm{m}^{2} \\
D_{a} & =2 \mathrm{~N}-\mathrm{m} \mathrm{~s} / \mathrm{rad} & D_{t} & =500 \mathrm{~N}-\mathrm{m} \mathrm{~s} / \mathrm{rad} & D_{c} & =30 \mathrm{~N}-\mathrm{m} \mathrm{~s}^{2} / \mathrm{rad}
\end{array}\right)
$$

and the knowledge that the relationship of the motor torque to motor speed is:

$$
T_{m}=750 \mathrm{~N}-\mathrm{m}-(25 \mathrm{~N}-\mathrm{m} \mathrm{~s} / \mathrm{rad}) \omega_{m}
$$

when $e_{a}=10 \mathrm{~V}$, determine the transfer function:

$$
G(s)=\frac{\Theta_{m}(s)}{E_{a}(s)}
$$

Name (please print):
Community Standard (print ACPUB ID):

Problem III: [20 pts.] Translational Transfer Functions and State Space

Given the translational system below:

(1) Determine the transfer function $G(s)=X_{2}(s) / F(s)$. You need to solve for $X_{2}(s) / F(s)$ but you do not need to multiply things out.
(2) Determine the state space representation of the system if the input is $f(t)$ and the output is $x_{1}(t)$. Be sure to clearly define all parts of the state space.

Name (please print):
Community Standard (print ACPUB ID):
Problem IV: [15 pts.] Mason's Rule
Determine the transfer function $T(s)=C(s) / R(s)$ given the following signal flow graph:

Name (please print):
Community Standard (print ACPUB ID):

Problem V: [30 pts.] Block Diagrams and Stability

Given the block diagram below:

(1) Assuming $H=0$, determine the overall transfer function, $T_{e q}(s)=C(s) / R(s)$.
(2) Assuming $H=0$ and $K=12$, determine the output $c(t)$ when the input $r(t)$ is a unit step function.
(3) Assuming $H=\frac{s}{s+1}$, determine the values of K that produce a stable system.
(4) Assuming $H=\frac{s}{s+1}$, determine the values of K that produce a marginally stable system, and state the corresponding frequencies of oscillation.

