In keeping with the Community Standard, I have neither provided nor received any assistance on this test. I understand if it is later determined that I gave or received assistance, I will be brought before the Undergraduate Conduct Board and, if found responsible for academic dishonesty or academic contempt, fail the class. I also understand that I am not allowed to speak to anyone except the instructor about any aspect of this test until the instructor announces it is allowed. I understand if it is later determined that I did speak to another person about the test before the instructor said it was allowed, I will be brought before the Undergraduate Conduct Board and, if found responsible for academic dishonesty or academic contempt, fail the class.

Signature:

Instructions

First - please turn **off** any cell phones or other annoyance-producing devices. Vibrate mode is not enough - your device needs to be in a mode where it will make no sounds during the course of the test, including the vibrate buzz or those acknowledging receipt of a text or voicemail.

Please be sure to put each problem on its own page or pages - do **not** write answers to more than one problem on any piece of paper and do not use the back of a problem for work on a **different** problem. You will be turning in each of the problems independently. This cover page should be stapled to the front of Problem 1.

Make sure that your name **and** NET ID are clearly written at the top of **every** page, just in case problem parts come loose in the shuffle. **Make sure that the work you are submitting for an answer** is clearly marked as such. Finally, when turning in the test, individually staple all the work for each problem and place each problem’s work in the appropriate folder.

Note that there may be people taking the test after you, so you are not allowed to talk about the test - even to people outside of this class - until I send along the OK. This includes talking about the specific problem types, how long it took you, how hard you thought it was - really anything. Please maintain the integrity of this test.

You may use the || symbol for resistances in parallel and do not need to expand that construction. Be clear with your use of parentheses, however; simply writing something like

\[R_{eq} = R_1 + R_2 \parallel R_3 + R_4 \]

is too vague since it could refer to any of the four combinations below:

![Resistor Combinations]

\[R_{eq} = R_1 + R_2 \parallel R_3 + R_4 \]
Problem 1: [20 pts.] Digital Logic

Given the following logical function:

\[f(A, B, C, D) = \overline{A} B C D + A B C D + \overline{A} B C \overline{D} + A \overline{B} C D + A B \overline{C} D + A B C D + A B \overline{C} \overline{D} + A B \overline{C} \overline{D} \]

(1) Clearly construct a Karnaugh map for the function. Be sure to label it appropriately and completely.

(2) Determine the Minimum Sum of Products (MSOP) form for the function. Be sure to show your process.

(3) Using standard 2-input logic gates, draw a logic circuit which implements the MSOP form of the expression. Be sure to clearly indicate whether two wires are connected or merely overlapping. Also be sure to draw your gates correctly and neatly!

(4) For the logic circuit you just drew, determine the complexity. Clearly indicate how you are computing the complexity.

(5) Finally, determine the Minimum Product of Sums (MPOS) form for the function. Be sure to show your process. You do not need to draw a circuit for this form nor do you need to calculate complexity.
Problem II: [20 pts.] The Basics

Given the following circuit:

and assuming that constant g, the values for the passive elements (R_1 through R_3), and the values for the independent sources (v_a, v_b, and i_c) are known, determine expressions for the following items in terms of known values. Note - if you solve for an unknown in terms of known quantities and clearly indicate that expression, you may use that unknown in later calculations without substitution. Put your expressions next to the appropriate bullet below:

- v_x: Ohm's Law on R_3 and KCL at n_S: $v_x = -R_3i_c$

- i_y: KCL at n_2: $-i_y + gn_x - i_c = 0$; $i_y = gn_x - i_c \implies -i_c(gR_3 + 1)$

- $P_{abs,R_2} = i^2R = \frac{(gn_x)^2R_2}{g^2R_3^2R_2}i_c$

- P_{del,v_a}: Use KVL with n_1: $-v_a + R_1i_y + V_b + V_i_c + nx = 0$; $P_{del,v_a} = v_i_c$

- P_{del,i_c}: Use KVL with n_1: $-v_a + R_1i_y - V_{vccs} + gn_xR_2 = 0$; $P_{del,i_c} = v_i_c$

- $P_{del,VCCS} = -v_a + R_1i_y + gn_xR_2$
Problem III: [20 pts.] Node Voltage Method

Given the following circuit:

and assuming that constants b and d, the values for the passive elements (R_1 through R_6), and the values for the independent sources (i_a and v_b) are known,

1. Clearly demonstrate the use of the Node Voltage Method in labeling unknowns for the circuit and in determining a complete set of linearly independent equations that could be used to solve for these unknowns. List the set of unknowns you believe your equations will find. Please put the list of unknowns and the equations on a separate piece of paper; you can label the circuit above.

2. Assuming you are able to solve for those unknowns, write expressions for

- $P_{abs, R_3} = \frac{v^2}{R} = \frac{(V_2 - V_3)^2}{R}$

- $P_{del, VCVS} = \frac{I_{VCVS}}{R_1} = \frac{V_1 - V_2}{R_1} + \frac{V_1 - V_3}{R_2}$ or

- $P_{del} = b V_y I_{VCVS}$
KCL in \(s_n 13 \): \[\frac{v_1 - v_2}{R_1} + \frac{v_3 - v_2}{R_3} + \frac{v_3 - v_y}{R_y} = 0 \]

KCL in \(n_2 \): \[\frac{v_2 - v_1}{R_1} + \frac{v_2 - v_3}{R_3} - di_x = 0 \]

KCL in \(n_y \): \[di_x + \frac{v_y - v_3}{R_y} + \frac{v_y - v_5}{R_5} + \frac{v_y - 0}{R_6} + i_a = 0 \]

SRC in \(v_b \): \[v_5 - 0 = v_b \]

SRC in \(v_y \): \[v_1 - v_3 = b v_y \]

CTRL in \(v_y \): \[v_3 - v_5 = v_y \]

CTRL in \(i_x \): \[di_x + \frac{v_y - 0}{R_6} = i_x \frac{a}{\frac{v_3 - v_y}{R_1} + \frac{v_5 - v_y}{R_5}} = i_x \]
Problem IV: [20 pts.] Mesh/Branch Current Method

Given the following circuit:

and assuming that constants \(b \) and \(d \), the values for the passive elements (\(R_1 \) through \(R_6 \)), and the values for the independent sources (\(i_a \) and \(v_b \)) are known,

(1) Clearly demonstrate the use of either the Branch Current Method or the Mesh Current Method in labeling unknowns for the circuit and in determining a complete set of linearly independent equations that could be used to solve for these unknowns. State which method you are using. List the set of unknowns you believe your equations will find. Please put the list of unknowns and the equations on a separate piece of paper; you can label the circuit above.

(2) Assuming you are able to solve for those unknowns, write expressions for

\[
p_{\text{abs, } R_3} = i^2 R = (i_1 - i_3)^2 R_3
\]

\[
p_{\text{del, CCCS}} = \text{usw. } V_{V_3} \cdot i_3' - V_{\text{accs}} + R_3 (i_3 - i_1) + R_1 (i_3) = 0
\]

\[
\sum \text{accs} = R_3 (i_3 - i_1) + 2i_1 i_3 \quad p_{\text{del, ccs}} = \text{di} \times V_{\text{accs}}
\]
\[\text{KVL}_1: \quad R_1i_1 + bV_y + R_3(i_1 - i_3) = 0\]
\[\text{KVL}_2: \quad -bV_y + R_2i_2 = 0\]
\[\text{KVL}_3: \quad R_6i_4 + R_5i_5 + V_5 = 0\]
\[\text{Src, } i_a: \quad i_a = i_4 - i_5\]
\[\text{Src, } dix: \quad dix = i_3\]
\[\text{CTRL, } i_x: \quad i_x = i_3 - i_4\]
\[\text{CTE1, } V_y: \quad -R_5(i_5) - R_4(i_3) + V_y = 0\]

Use KVL around \(R_4\) and \(R_5\): \(V_y = +R_5i_5 + R_4i_3\)
Problem IV: [20 pts.] Mesh/Branch Current Method

Given the following circuit:

and assuming that constants b and d, the values for the passive elements (R_1 through R_6), and the values for the independent sources (i_a and v_b) are known,

1. Clearly demonstrate the use of either the Branch Current Method or the Mesh Current Method in labeling unknowns for the circuit and in determining a complete set of linearly independent equations that could be used to solve for these unknowns. State which method you are using. List the set of unknowns you believe your equations will find. Please put the list of unknowns and the equations on a separate piece of paper; you can label the circuit above.

2. Assuming you are able to solve for those unknowns, write expressions for

 \[P_{abs,R_3} = i^2 R = \left(i_3 \right)^2 R_3 \]

 \[P_{del,CCCS} = \begin{align*}
 \text{VNL}{i_2} & = -N_{ccs} -R_3 i_3 + R_i dix = 0 \\
 N_{ccs} & = -R_3 i_3 + R_i dix \\
 \text{Pdel,CCCS} & = dix N_{ccs}
 \end{align*} \]
KVL, \(L_1 \): \(R_1 (d_1 i + i_b) + b v_y + R_y i_y = 0 \)

KVL, \(L_2 \): \(-b v_y + R_2 (d_1 i + i_b + i_2) = 0 \)

KVL, \(L_3 \): \(R_6 (d_2 i_x) + R_5 ((d_2 - 1) i_x - i_a) + N_b = 0 \)

KVL, \(N_b \): \(-R_5 ((d_2 - 1) i_x + i_a) - R_2 d_1 i + N_y = 0 \) then

\[N_y = R_5 ((d_2 - 1) i_x + i_a) + R_2 d_1 i \]
Problem V: [20 pts.] Neon Light Problem

(1) Make an accurate sketch of \(y(t) \) for \(t \geq 0 \) sec if

\[
y(t) = 6 - 18e^{-t/4}
\]

Have your independent axis go from 0 sec to at least three time constants out. Be sure to label your axes and show how you made an accurate sketch.

(2) Now consider the following circuit (which has nothing to do with \(y(t) \) above, by the way):

![Circuit Diagram]

with two switches. The switch on the left is initially open, but closes at \(t=0^- \) sec. The switch on the right is initially closed, but opens at \(t=0^+ \) sec. Assume that both independent sources are constant, that the values of the passive elements are known, and that the circuit has been in place for a very long time before \(t=0 \) sec. Label the inductor current and voltage on the circuit above, and then:

(a) Determine the voltage across and current through the inductor just before the switches...switch (i.e. at time \(t=0^- \) sec).

(b) Determine the voltage across and current through the inductor just after the switches switch (i.e. at time \(t=0^+ \) sec).

(c) Determine the voltage across and current through the inductor a “really long time” after the switches switch (i.e. as \(t \to \infty \) sec).

(d) Find a single differential equation that could be solved to determine the inductor current for \(t > 0 \) in terms of known values.

(e) Write a closed-form solution to that equation for the inductor current using the known values.
Given the circuit diagram and initial conditions:

\[t = 0^- \quad \text{DCSS} \]

\[v_L(0^-) = v_i, \quad v_L(0^-) = 0 \]

At \(t = 0^+ \):

\[v_L(0^+) = v_i(0^-) = v_i \]

\[K C_{L1} n_2 : \quad v_L(0^+) = v_{L2} + \frac{v_L(0^+)}{R_2} + i_L(0^+) = 0 \]

\[v_L(0^+) = \frac{v_{L2} - i_L(0^+)}{R_1 + \frac{1}{R_2}} = \frac{R_2 v_{L2} - R_1 R_2 i_i}{R_1 + R_2} \]

As \(t \to \infty \):

\[i_L(\infty) = \frac{v_i}{R_1}, \quad v_L(\infty) = 0 \]
KCL, eqn 1:
\[
\frac{L}{R_1} \frac{d\bar{u}}{dt} - \frac{N_a}{R_1} + \frac{L}{R_2} \frac{d\bar{u}}{dt} + \bar{i}_L = 0
\]

\[
\left(\frac{L}{R_1} + \frac{L}{R_2} \right) \frac{d\bar{u}}{dt} + \bar{i}_L = \frac{N_a}{R_1}
\]

\[
\bar{i}_{L_i} = \bar{i}_L(0^+) = \bar{i}_b \quad \bar{i}_{L_f} = \bar{i}_L(\infty) = \frac{N_a}{R_1}
\]

\[
\lambda = \frac{L}{R_1} + \frac{L}{R_2} = \frac{L}{R_1 \, R_2} = \frac{L}{R_1 \, R_2}
\]

\[
\bar{i}_L = (\bar{i}_{L_i} - \bar{i}_{L_f}) e^{t/\lambda} + \bar{i}_{L_f}
\]

\[
= \left(\bar{i}_b - \frac{N_a}{R_1} \right) e^{t/\lambda} \left(\frac{1}{R_1 + \frac{R_2}{L}} \right) + \frac{N_a}{R_1}
\]